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Despite great biological and computational efforts to determine the genetic causes underlying human heritable diseases,

approximately half (3500) of these diseases are still without an identified genetic cause. Model organism studies allow the

targeted modification of the genome and can help with the identification of genetic causes for human diseases. Targeted

modifications have led to a vast amount of model organism data. However, these data are scattered across different

databases, preventing an integrated view and missing out on contextual information. Once we are able to combine all

the existing resources, will we be able to fully understand the causes underlying a disease and how species differ. Here, we

present an integrated data resource combining tissue expression with phenotypes in mouse lines and bringing us one step

closer to consequence chains from a molecular level to a resulting phenotype. Mutations in genes often manifest in

phenotypes in the same tissue that the gene is expressed in. However, in other cases, a systems level approach is required

to understand how perturbations to gene-networks connecting multiple tissues lead to a phenotype. Automated evalu-

ation of the predicted tissue–phenotype associations reveals that 72–76% of the phenotypes are associated with disruption

of genes expressed in the affected tissue. However, 55–64% of the individual phenotype–tissue associations show spatially

separated gene expression and phenotype manifestation. For example, we see a correlation between ‘total body fat’

abnormalities and genes expressed in the ‘brain’, which fits recent discoveries linking genes expressed in the hypothalamus

to obesity. Finally, we demonstrate that the use of our predicted tissue–phenotype associations can improve the detection

of a known disease–gene association when combined with a disease gene candidate prediction tool. For example, JAK2,

the known gene associated with Familial Erythrocytosis 1, rises from the seventh best candidate to the top hit when the

associated tissues are taken into consideration. Database URL: http://www.sanger.ac.uk/resources/databases/phenodigm/

phenotype/list

.............................................................................................................................................................................................................................................................................................

Introduction

Despite tremendous efforts in the biological and computa-

tional domain to identify disease gene candidates (1–5),

almost half of the 7000 defined human genetic disorders

are still without an identified cause (6). To find cures and

prevention mechanisms for diseases, we need to understand

the genetic causes triggering the disease. Studies in model

organisms have gained more and more importance in the

quest for identifying disease gene candidates because they

provide a means to specifically target genes and observe the

consequences on an organism scale. Model organism data-

bases, such as the Mouse Genome Informatics Database

[MGD; (7)], the International Mouse Phenotyping

Consortium [IMPC; (8)] or the Sanger Mouse Genetics

Project [Sanger-MGP; (4)], store the results of the biological

investigation particular to one species. Determining suitable

models for a human disease not only provides insights into
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the genetic causes of a heritable disease but also enables the

identification of potential drug targets (9).

To understand the full impact of a gene as well as a drug,

all the causal relationships between gene products result-

ing in a phenotype need to be understood. Part of under-

standing the relationships and building reasoning chains

from a gene to an organism level is the determination of

the location of gene products. Once the products are

located, pathways recapitulating the interactions of gene

products can be defined (10, 11). For this purpose, the IMPC

portal not only includes phenotype information resulting

from biological experiments but also includes gene expres-

sion data from adult mice (http://www.sanger.ac.uk/htgt/

biomart/martview). In the IMPC portal, one mouse line cor-

responds to the mutation of one single gene of the mouse

genome. Each mouse line is further characterized with

gene expression data and phenotypes. However, the data

are not further analyzed for associations between gene ex-

pression patterns and phenotypes. Other resources, e.g.

BioGPS (12), only provide gene expression data entirely in-

dependent from observed phenotypes.

In an earlier study, Hoehndorf et al. (13) annotated 1053

mouse genes with 151 different Neuro Behaviour Ontology

concepts and determined enriched concepts for groups of

differentially expressed genes. Using this approach, the au-

thors could show that the expression data are sufficient to

predict the behavioural differences between the two states.

In our study, we analyzed the gene expression and

phenotypic profiles to determine global patterns between

expression patterns and phenotypes. Establishing links be-

tween tissues and phenotypes will allow us to better under-

stand the connections reaching from a molecular level to

the resulting phenotype. Applying the approach will not

only show affected anatomical entities that are associated

with a phenotype but also help understand what other

components are involved in the process resulting in the

final phenotype. In some cases, an observed phenotype

will simply result from disruption of a gene that is specific-

ally expressed in the affected tissue, e.g. disruption of the

cardiac-expressed MYH7 gene resulting in Familial

Hypertrophic Cardiomyopathy (OMIM:192600). In other

cases, a systems level approach is required to understand

the development of the disease, e.g. obesity is known to at

least partially involve perturbations to gene-networks con-

necting the hypothalamus and metabolic tissues (14).

To assess connections between phenotypes and tissues,

we used two different methods and provided all our results

through PhenoDigm’s web interface (http://www.sanger.

ac.uk/resources/databases/phenodigm/; database: WTSI

Mouse Genetics Project (Sanger UK); dataset: MGP

Phenotyping; attributes: Adult Expression) (1). We evalu-

ated the obtained results for their biological correctness

both manually and automatically.

We have recently demonstrated how mouse phenotype

comparisons can be used to prioritize candidate genes re-

sulting from exome analysis of rare diseases (15). The

phenotype–tissue associations we provide here can be

used to further narrow down candidate lists, i.e. the tissues

we associate with the phenotypes can be used to further

prioritize the candidates based on their individual expres-

sion patterns.

Methods and Materials

Before associating expression and phenotype data, we

downloaded and harmonized data sets from several differ-

ent data repositories. After calculating associations’ scores,

we evaluated the obtained associations both automatically

and manually. The applied data sets are described in Input

data, while the section on Establishing connections be-

tween tissues and phenotypes explains the algorithms

used for the association of tissues and phenotypes.

Implementation focusses on the implementation and

Evaluation provides details for the evaluation of the results.

The overall work flow of the study is depicted in Figure 1.

Input data

Phenotype annotation data. In our study, we applied

the phenotype data that are available from the MGD and

Sanger-MGP databases. We downloaded the

Figure 1. Illustration of the overall work flow of the study.
After downloading and formatting all required data, the ex-
pression profiles are merged into one data set. The merged
data set is then used to calculate the associations between
tissues and phenotypes that are then evaluated. After evalu-
ation, the significant associations are loaded into and pro-
vided via the PhenoDigm web interface.
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MGI_GenePheno.rpt report file on 20 July 2013 and accu-

mulated phenotype annotations on a gene level. This data

set comprises phenotype annotations for single-gene

knockouts only so that a relationship between a gene

and the resulting phenotype can be assumed. The Sanger-

MGP data was downloaded at the same time from http://

www.sanger.ac.uk/htgt/biomart/martview. The applied ver-

sion of the files comprised 126 522 phenotype annotations

for 9447 genes (average 13.391 phenotypes per gene).

MGD uses the Mammalian Phenotype Ontology (MP) to

represent mouse phenotypes. The data set applied in this

study included 7393 unique MP concepts.

Expression data. To utilize gene expression in our study,

several different data repositories were used to compile a

comprehensive amount of tissue data. We used the Sanger

Mouse Genome Portal (Sanger-MGP) expression data in

combination with the Gene Expression Barcode database

(http://barcode.luhs.org/) (16).

Sanger-MGP provides not only expression data but also

phenotype annotations on a mouse line level. Each mouse

line is characteristic for a particular gene knockout and

characteristic phenotypes are determined by applying 20

standard operating procedures (17). For a subset of the

mouse lines, the b-galactosidase reporter gene (LacZ) was

used to report about gene expression in 41 tissues, typically

in heterozygotes of 6 weeks of age or older (4). The pro-

cedure includes the localization of the reporter gene in the

adult mouse by observing the absence or presence of a

staining in a particular tissue or organ. However, some of

the tissues are considered difficult, e.g. as a background

colour makes a confident call impossible. For this reason,

we excluded the problematic tissues, leading to a subset of

26 non-gender-specific tissues and 5 gender-specific tissues.

For each tissue, the expression value can be one of present

(staining corresponding to the expression of the gene is

clearly visible), absent (if no gene expression occurs in the

investigated tissue), ambiguous (the annotator cannot take

a clear decision from the image whether or not tissue ex-

pression is present) or no data (if no images have been

taken). We included here only the ‘present’ calls and

excluded all other calls. The data set comprised annotations

for 383 genes and was downloaded from the Sanger-MGP

BioMart on 4 November 2013.

The second expression data repository used here was the

Gene Expression Barcode database. The Gene Expression

Barcode database includes data from the public Gene

Expression Omnibus and ArrayExpress repositories and har-

monizes the results from MicroArray experiments into

‘absent/present’ calls across a range of human and mouse

tissues using the method described in (18). We downloaded

a snapshot of the mouse transcriptome data on 1

November 2012, and the download file comprised gene an-

notation data for 15 789 genes and 246 tissues.

A harmonized subset between both expression data files

was formed by mapping the gene identifiers and limiting

the tissues to the common subset. The reduced data set

included 21 normal adult tissues, which were then manually

aligned to Mouse Adult Gross Anatomy (MA) concepts (19)

for data evaluation and integration purposes.

MGD marker information. The Gene Expression

Barcode database provided their download file with MGD

gene symbols and Ensembl identifiers (IDs) to reference

mouse genes. We chose MGD gene accession IDs to be

the point of reference. Therefore, we also downloaded

the MGI_Gene_Model_Coord.rpt MGD report on 4

November 2013. The report file contained 38 236 Ensembl

IDs together with their corresponding MGD gene accession

IDs. Applying the report file data, we were able to map the

expression data for 14 881 genes from the Gene Expression

Barcode data. This reduced set of Gene Expression Barcode

profiles was used in all subsequent analyses.

Ontology data. In a previous study, Mungall et al. (20)

suggested the composition of species-specific phenotypes

with species-agnostic ontologies to facilitate the compari-

son of phenotypes across species using ontologies and se-

mantic similarity measures. This led to the generation of so-

called entity-quality (EQ) statements by means of which a

phenotype is decomposed into an affected entity (e.g. ana-

tomical component or process) that is further described

with a quality. For example, the phenotype micrognathia

(MP:0002639) is composed using jaw (MA:0001905) as af-

fected anatomical entity and decreased size

(PATO:0000587) as descriptive quality. We downloaded

the EQ statements for MP concepts from the Google project

web page (https://code.google.com/p/phenotype-ontolo-

gies/) and extracted the MP concepts that contain at least

one anatomical entity in their EQ statement. Anatomical

entities are represented with UBERON concepts, a species-

agnostic anatomy ontology (21). We then used UBERON’s

cross-references to MA to associate MP concepts with MA

concepts, leading to an association of 4000 MP concepts

with 1162 unique MA concepts.

Establishing connections between tissues and
phenotypes

To establish connections between expression and pheno-

type data, Hoehndorf et al. (13) suggested the hypergeo-

metric distribution for ‘absent/present’ calls in the

expression data, in accordance with the extended FUNC

software applied (22). A hypergeometric distribution pro-

vides the probability to draw a certain number of successes

from a population without replacement. However, for

small population sizes, as well as a small number of suc-

cesses available in the population, the hypergeometric dis-

tribution may lead to a distorted view on the data and,

.............................................................................................................................................................................................................................................................................................
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consequently, false-positive associations between tissues

and phenotypes. To provide more confidence in the ob-

tained scores, we not only restricted the input parameters

of the hypergeometric distributions (see Hypergeometric

distribution) but also used a second method. We applied

association rule mining as the second method, which has

been previously used to successfully extract links between

Gene Ontology [GO, (23)] concepts from the three different

branches of GO (24–26). The links were extracted from

large annotation sets.

Hypergeometric distribution. P-values calculated

from hypergeometric distributions have been successfully

applied in the bioinformatics domain. For example, a

hypergeometric distribution was used to map chromosomal

regions and vocabularies based on textual evidence (27) as

well as finding enriched GO terms [or other ontologies (13)]

for expressed genes (22). As described in (27), the P-value

corresponds to the hypergeometric cumulative distribution

function described by

ptp ¼ 1� Hcdf Otp T ,P,Gj
� �

with Otp the number of times tissue and phenotype are

used in conjunction to annotate a gene; T being the

number of times the tissue occurs as an annotation in the

data set; P being the number of times the MP concept

occurs as an annotation in the data set; PT being the overall

count of genes and ptp being the resulting P-value.

Owing to the fact that a hypergeometric distribution

may distort the view when the occurrences of MP concepts

are low, we only included MP concepts that occur at least

10 times as annotations in the applied annotation set. After

manual evaluation of a preliminary test run, we deter-

mined a P-value cut-off level of 0.005 (data not shown).

Association rule mining. Association rule mining was

traditionally used to determine connections between items

that are frequently purchased together, but it has been

successfully applied in the bioinformatics domain to de-

termine relationships between Gene Ontology concepts

(24–26). Our goal was to determine rules existing between

tissues and phenotypes based on an extensive annotation

set, similar to the Gene Ontology studies. Therefore, we

used association rule mining as our second approach to de-

termine connections between tissues and phenotypes. We

used here the a priori implementation (http://www.borgelt.

net/doc/apriori/apriori.html) of association rule mining, set-

ting the parameters to

�tr� s� 6�m2� n2� c90� ep� v’’%e’’

These parameters’ settings mean that only rules are ex-

tracted between the tissue and phenotype that possess a

confidence level of at least 90%, co-occur at least six times

together as annotations for a gene and the results are re-

turned as P-values instead of probabilities.

Implementation

While no additional implementation was required for the

association rule mining, data preparation and harmoniza-

tion as well as calculating the P-values using a hypergeo-

metric distribution were implemented using Groovy,

version 2.0.4 (http://groovy.codehaus.org/Download), and

the Apache Commons Math library, version 3.3.2 (http://

commons.apache.org/proper/commons-math/). To access

the ontology files and extract is_a and part_of relations

between MA concepts, we used Groovy in conjunction

with the Brain library (version 1.4) (https://github.com/loop-

asam/Brain) (28), the Elk reasoner library (version 0.3.2)

(https://code.google.com/p/elk-reasoner/) (29) and the

OWL API library (version 3.2.3, as required by the Elk rea-

soner library) (http://owlapi.sourceforge.net/).

Implementation of web interface. PhenoDigm’s ori-

ginal web interface was developed using the Play! frame-

work (http://www.playframework.org/) (version 1.2.5). The

functionality of the Play! framework was extended using

jQuery (version 1.6.4) and jQuery UI (version 1.9.1). As a

consequence, the extension of the web interface that

allows access to the association scores between tissues

and phenotypes uses the same software technologies and

versions.

Evaluation

To evaluate the obtained tissue–phenotype associations,

we conducted an automated as well as a manual evalu-

ation. The details for both evaluation steps are provided

in the following subsections.

Comparison with EQ statements of MP
concepts. Using a compositional method as described by

Mungall et al. (20), phenotypes can be described using ana-

tomical entities that correspond to tissue types. To auto-

matically evaluate our results, we used the EQ statements

available for download for MP concepts. In total, 4000 MP

concepts possessed an EQ statement, covering in total of

1162 MA concepts. Because the applied expression data

covered only 21 tissues, we further filtered the EQ state-

ments to those that can be represented with the tissues

used in the study. Moreover, we allowed tissues that are

either in a part_of or is_ a relationship (including transitiv-

ity) with the 21 tissues. This filtering step reduced the avail-

able evaluation set to 1546 MP concepts, covering 491

unique MA concepts.

In the automated evaluation step, we first assessed how

many phenotypes obtain the expected tissue (allowing for

subclass and ‘part_of’ relationships). Furthermore, we

evaluate each individual phenotype–tissue association by

.............................................................................................................................................................................................................................................................................................
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means of whether this particular association of tissue

and phenotype is expected. We note here that a tissue

that is not found in the EQ statement may not necessarily

be incorrect and may, in fact, constitute a biologically

relevant case.

Manual investigations. Owing to the limitations of the

automated evaluation, we also added a manual evaluation

step to the workflow. We extracted those phenotypes from

the results that did not obtain the expected tissue used in

the EQ statement as any of the predicted tissue associations

and investigated these cases further with respect to biolo-

gical relevance as well as technical shortcomings of the

method. This evaluation step was executed by two inde-

pendently working curators, each evaluating a subset of

the data. Results from both curators were merged to

form the final evaluation results.

Results and Discussion

To associate tissues and phenotypes based on gene expres-

sion and phenotype data, we used a hypergeometric distri-

bution as well as the association rule mining. With the

hypergeometric distribution, we obtained 2998 significant

tissue associations for 1121 unique MP concepts. Applying

the a priori software for association rule learning, we ob-

tained 272 associations, including 205 unique MP concepts.

The combined results from both methods constitute 3168

phenotype–tissue associations, comprising 1239 pheno-

types. We evaluated these associations both automatically

and manually.

Comparison with logical definitions

First, we automatically evaluated the results using the EQ

statements for MP concepts (see Comparison with EQ state-

ments of MP concepts), assuming that the tissue used for

the composition of a phenotype would also be one of the

predicted tissues using either method. We allowed for the

tissue to be counted as a match, if either the tissue pre-

dicted or the tissue used in the EQ statement is a part or

subclass of the other. Results were evaluated on a pheno-

type level by means of whether the tissue from the EQ

statement is contained in the predictions, but additional

tissues may also be associated. All results are summarized

in Table 1.

Comparison of hypergeometric distribution
associations. Using the hypergeometric distribution led

to the extraction of 2998 associations between a tissue

and a phenotype, covering 1121 unique phenotypes.

From the 1121 unique phenotypes, 242 possessed an EQ

statement, whereas 879 either did not possess an EQ state-

ment or the tissue was not represented with the 21 tissues

used in this study (see Comparison with EQ statements of

MP concepts). For 184 phenotypes out of these 242 (76%),

we were able to recover the tissue used in the EQ state-

ment. However, more than one tissue can be assigned to

any of the 184 phenotypes. The remaining prediction re-

sults for 58 phenotypes (24%) did not include the tissue

used in the logical definition.

For automated evaluation, 586 individual phenotype–

tissue associations were available, as the phenotype had a

suitable EQ statement. Of the 586 associations, 59 (10%)

constituted exact matches by means that the tissue pre-

dicted is also used in the EQ statement of the phenotype.

For 88 associations (15%), the predicted tissue is either a

‘part_of’ or subclass of the tissue used in the EQ statement.

In 66 cases (11%), the tissue used in the EQ statement is a

‘part_of’ or a subclass of the tissue provided by the pre-

dicted associations. This leaves a total of 373 associations

(64%), where the predicted tissue cannot be confirmed

using the EQ statement. We note here that although the

Table 1. Obtained evaluation results for the automated evaluation against tissues contained in EQ statements of
MP concepts

Hypergeometric distribution Association rule

Type of comparison Phenotype Association Phenotype Association

Expected - exact 184 (76%) 59 20 (71%) 2

Expected - psp 88 6

Expected - ldsp 66 13

Number of tissue matches 58 (24%) 373 8 (29%) 26

Number of EQ 879 2412 177 225

Total 1121 2998 205 272

Results are grouped by the type of comparison either on a phenotype or an individual phenotype-tissue association level.

On the association level, expected tissues are further divided into whether the same tissue was predicted as used in EQ

(exact), predicted tissue is subclass or part_of tissue in EQ (psp), or tissue in EQ is subclass or part_of tissue predicted (ldsp).

Note that even though tissues between EQ and prediction do not match, the association may still be correct. No EQ means

that no EQ statement referring a tissue that is related to any of the 21 applied was available for evaluation.

.............................................................................................................................................................................................................................................................................................
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373 associations cannot be confirmed using the EQ state-

ments, it does not mean that they are incorrect biologically

because the site of expression and the eventual manifest-

ation of the phenotype do not have to directly correspond.

Our results show that for at least 76% of the phenotypes

that could automatically be evaluated, the expected tissue

is assigned. This suggests that the hypergeometric distribu-

tion can be applied to determine associations between tis-

sues and phenotypes. Assuming that the tissue used in the

EQ statement is correct, the 373 associations, where a dif-

ferent tissue was found to be associated with the pheno-

type, could be indicators for a spatial separation of gene

expression and the resulting phenotype. These cases re-

quire further investigation and could potentially give

novel biological insights.

Comparison of association rule mining results. By

applying the association rule mining to the data set to iden-

tify connections between tissues and phenotypes, 272 rules

including a tissue and a phenotype were generated. These

272 association rules, covering 205 unique phenotypes,

were also automatically evaluated against the EQ state-

ments of MP concepts (see Comparison with EQ statements

of MP concepts). From the 205 unique phenotypes, 177

either did not possess an EQ statement or the tissue used

in the EQ statement could not be represented with the tis-

sues used in this study. From the remaining 28 phenotypes,

20 (72%) obtained the expected tissue as one of the pre-

dictions, whereas 8 (28%) were not associated with the

tissue used in the EQ statement.

For automated evaluation, 44 individual phenotype–

tissue associations were available, as the phenotype had a

suitable EQ statement. Two (4%) showed an exact match to

the predicted tissues; in six cases (13%), the prediction was

either a subclass or a ‘part_of’ the tissue used in the EQ

statement; in 13 cases (28%), the tissue used in the EQ

statement was a ‘part_of’ or subclass of the predicted tis-

sue; and in 26 association rules (55%), the tissue predicted

was not in a relationship with the tissue used for the EQ

statement. Again, as discussed previously, these non-align-

ing associations are not necessarily wrong and are worthy

of further biological investigations.

Using association rule mining on the applied annotation

set provides a smaller set of associations between tissues

and phenotypes compared with the hypergeometric distri-

bution. However, the results of the automated evaluation

suggest a similar behaviour. In total, 72% of the pheno-

types obtain a predicted association with the tissue used

in the EQ statements, while the remaining 28% need not

be wrong associations. Our results show that association

rule mining is, compared to the hypergeometric distri-

bution, equally applicable to the task of learning associ-

ations between tissues and phenotypes even though the

result set is comparatively smaller. The parameters applied

for the a priori software may be the reason for the small

result set, and future refinement may lead to more

associations.

Manual evaluation results

To further assess the quality of our results, we manually

evaluated the phenotypes that did not obtain the expected

tissue used in the EQ statements as a predicted association

from the applied method, i.e. 8 phenotypes from the asso-

ciation rule mining and 58 phenotypes resulting from asso-

ciations made with the hypergeometric distribution.

In the case of the association rule results, five of the

manually investigated phenotypes only possess rules with

fairly high P-values (in the range from 0.0036 to 0.015). This

suggests that the applied parameters for the software may

not be ideal, and a simple filtering of the rules according to

the P-value may eliminate all tissue associations for these

phenotypes. However, three of eight phenotypes show low

P-values with at least one tissue: ‘abnormal ciliary body

morphology’ (MP:0005099) with ‘skin’ (MA:0000151),

P = 1.3e-06; ‘decreased spleen iron level’ (MP:0008808)

with ‘liver’ (MA:0000358), P = 7.8e-04 and ‘eye opacity’

(MP:0009859) with ‘brain’ (MA:0000168), P = 1.7e-04.

For the ‘abnormal ciliary body morphology’ and ‘eye

opacity’ examples, many of the supporting genes are also

expressed in the expected tissue of the eye, but the data set

did not allow for this connection to be made with associ-

ation rule mining. We note here that this association can,

however, be seen when using the hypergeometric distribu-

tion. Thus, it is possible that the phenotype is associated

with expression in the expected tissue and is simply

missed because of the stringency levels used in the associ-

ation rule mining approach. In the example of ‘abnormal

ciliary body morphology’, like ‘skin’, the ciliary body con-

tains melanocytes, and melanomas of the ciliary body are

relatively common (30). It is possible that the genes asso-

ciated with ‘abnormal ciliary body morphology’ are ex-

pressed in melanocytes.

In the case of the ‘decreased spleen iron level’ and ‘liver’

association, there is no evidence that the supporting genes

are expressed in the spleen as well. The hepatic peptide

hepcidin is known to control the amount of iron stored in

the bone marrow, liver and spleen (31). Thus, it is possible

that genes expressed in the ‘liver’ and associated with

‘decreased spleen iron level’ are involved in the regulation

of hepcidin. The Hamp gene that expresses hepcidin is one

of the genes contributing to our association.

In the case of the hypergeometric distribution, 26 of the

59 evaluated phenotypes had the expected tissue assigned

but the P-values were in the range of 0.005–0.5. To avoid a

high number of misleading annotations, we set the cut-off

P-value to 0.005. While this means that some of the ex-

pected tissues (with respect to the tissue used in the EQ

statement) may disappear, overall, only highly significant
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connections between tissue and phenotypes will be re-

ported that likely signal a relevant biological connection.

We note here that the predictions are only as good as the

annotation set. However, as in the case of the association

rule mining, a number of potentially relevant biological

connections could be identified based on the obtained P-

values: ‘decreased total body fat amount’ (MP:0010025)

and ‘brain’ (MA:0000168), P = 6.3e-7; ‘liver hypoplasia’

(MP:0000600) and ‘spleen’ (MA:0000141), P = 5.4e-6; and

‘lung inflammation’ (MP:0001861) and spleen

(MA:0000141), P = 9.9e-5.

The ‘liver’ and ‘spleen’ work together closely in the main-

tenance of red blood cells and co-occurring abnormalities

are often seen, e.g. hepatosplenomegaly. Hence, it is

plausible that disruptions in spleen-expressed genes could

affect the liver, resulting in ‘liver hypoplasia’. The spleen

also plays a vital role in the immune system, so the ‘lung

inflammation’ phenotype associated with disruption of

spleen-expressed genes could be a consequence of the

de-regulation of an immune response.

The final example of an association between genes ex-

pressed in the ‘brain’ and ‘total body fat’ abnormalities is

intriguing because, as described in the Introduction section,

many recent studies have highlighted the role that genes

expressed in the ‘brain’ play a role in obesity. The list of

genes associated with ‘body fat abnormalities’ and brain

expression in the mouse may be interesting candidates to

consider in future obesity studies.

Figure 2. Depicts the extension of the PhenoDigm web interface and how the data can be browsed using the newly added
pages. From a list of phenotypes, those of interest can be selected, leading to a page that shows P-values for each of the
investigated tissues. Hyphens in one of the P-value fields indicate that with the data set no significant association between the
phenotype and the tissue could be identified. For significant associations, genes supporting the association between tissue and
phenotype are provided.
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Application of data to use cases

The original PhenoDigm application was designed to prior-

itize candidate genes for diseases by semantically compar-

ing the clinical features with the phenotypes of mouse

mutants involving the ortholog of the gene.

Incorporating expression data as well as phenotype com-

parisons has the potential to reduce or re-prioritize the

set of candidates.

For example, Familial Erythrocytosis 1 (OMIM:133100) is

known to result from mutations in the JAK2 gene.

PhenoDigm reveals that mouse models disrupting the

mouse ortholog exhibit highly similar phenotypic features

to the disease, but there are models involving six other

genes that score higher (www.sanger.ac.uk/resources/data-

bases/phenodigm/disease/OMIM:133100). If we take the

best MP matches (e.g. enlarged spleen and thrombophle-

bitis) for the clinical phenotypes associated with this dis-

ease, five tissues are associated with these MP terms in

our association set involving the spleen, liver, lung, white

adipose tissue and mammary gland. Restricting the top 200

PhenoDigm candidates to only genes expressed in these

five tissues reduces the set to 26 genes, and JAK2 is now

the top candidate.

Browsing data online

After evaluating the obtained associations, we included the

significant tissue–phenotype connections into PhenoDigm’s

original web interface. The data can be browsed starting

from the phenotype level. Once a phenotype is chosen, all

significant tissues are provided together with the EQ state-

ment, where an EQ statement is available. P-values from

either method are kept and provided to the user of the

online data. For each significant connection, all genes

that are annotated with both the MA as well as the MP

concept are provided. These genes can then be further

investigated using the gene pages available from MGD or

any other tool. An illustration of the workflow and struc-

ture of the data is available in Figure 2.

While the data are, at the moment, an extension to the

PhenoDigm’s original database, we intend to link both data

sets further together in future works and provide an inte-

grated view of the data.

Conclusions and Future Work

In conclusion, we established potentially biologically rele-

vant associations between tissues and phenotypes and eval-

uated the obtained results using an automated as well as a

manual evaluation step. We obtained a total of 3168 sig-

nificant associations (covering 1239 phenotypes) that are

provided as an extension to PhenoDigm’s web interface

and can be browsed online. These associations can be

applied in further use cases, e.g. to narrow down the

disease gene candidates or drug targets predicted from

other methods.

In future works, we intend to further assess the import-

ance of P-value thresholds and the ideal parameter settings

for the a priori software applied. In addition, we plan to

incorporate expression data from developmental stages

and not only from adult tissues. Some of the mouse lines

analyzed are embryonic lethal or subviable, and, in add-

ition, some of the phenotypes recorded for adult lines

will have initially arisen during development.

Incorporation of expression data from embryonic stages

as well may allow for the extraction of additional associ-

ations to these developmental phenotypes.

We also plan to incorporate more tissues than the 21

included here. The Gene Expression Barcode was (see

Expression data), for example, significantly reduced when

establishing the common subset with Sanger MGP expres-

sion data. An ideal number of tissues needs to be deter-

mined to still obtain significant associations between

tissues and phenotypes. After the intended improvements,

the data will be updated in the web interface and further

linked with the original data contained in PhenoDigm.
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