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Abstract

The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) chal-

lenge evaluation tasks collectively represent a community-wide effort to evaluate a var-

iety of text-mining and information extraction systems applied to the biological domain.

The BioCreative IV Workshop included five independent subject areas, including Track 3,

which focused on named-entity recognition (NER) for the Comparative Toxicogenomics

Database (CTD; http://ctdbase.org). Previously, CTD had organized document ranking

and NER-related tasks for the BioCreative Workshop 2012; a key finding of that effort was

that interoperability and integration complexity were major impediments to the direct ap-

plication of the systems to CTD’s text-mining pipeline. This underscored a prevailing

problem with software integration efforts. Major interoperability-related issues included

lack of process modularity, operating system incompatibility, tool configuration com-

plexity and lack of standardization of high-level inter-process communications. One ap-

proach to potentially mitigate interoperability and general integration issues is the use of

Web services to abstract implementation details; rather than integrating NER tools dir-

ectly, HTTP-based calls from CTD’s asynchronous, batch-oriented text-mining pipeline

could be made to remote NER Web services for recognition of specific biological terms

using BioC (an emerging family of XML formats) for inter-process communications. To

test this concept, participating groups developed Representational State Transfer /BioC-

compliant Web services tailored to CTD’s NER requirements. Participants were provided

with a comprehensive set of training materials. CTD evaluated results obtained from the

remote Web service-based URLs against a test data set of 510 manually curated scientific

articles. Twelve groups participated in the challenge. Recall, precision, balanced F-scores

and response times were calculated. Top balanced F-scores for gene, chemical and

disease NER were 61, 74 and 51%, respectively. Response times ranged from fractions-

of-a-second to over a minute per article. We present a description of the challenge and
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summary of results, demonstrating how curation groups can effectively use interoper-

able NER technologies to simplify text-mining pipeline implementation.

Database URL: http://ctdbase.org/

Introduction

The Comparative Toxicogenomic Database (CTD; http://

ctdbase.org) is a publicly available, manually curated re-

source that promotes understanding of the mechanisms by

which drugs and environmental chemicals influence biolo-

gical processes and human health (1). CTD’s PhD-level

staff biocurators review the scientific literature and manu-

ally curate chemical–gene/protein interactions, chemical–

disease relationships and gene–disease relationships, using

a novel, highly structured notation in conjunction with

CTD’s Web-based curation tool (2). The manual curation

process organizes disparate data from scientific publica-

tions into a standard structured format, making it more

manageable and computable for bioinformatics-related

processing. Curated data are integrated with each other as

well as external data sets to facilitate development of novel

hypotheses about chemical–gene–disease networks (1).

Curated data are captured using publicly available con-

trolled vocabularies. Diseases are represented using CTD’s

disease vocabulary, MEDIC (3), which merges OMIM (4)

terms with the Disease subset of the National Library of

Medicine’s Medical Subject Headings (MeSH) vocabulary

(5), genes/proteins are represented using Entrez Gene terms

(6), chemicals/drugs are represented using a modified sub-

set of Chemicals and Drugs terms within MeSH (5) and

chemical–gene/protein interactions are captured using

CTD’s action term vocabulary (1).

CTD typically selects curation topics by targeting specific

chemicals from a ‘Chemical Priority Matrix’ (2). Depending

on the chemical targeted, there are often many more articles

available for curation than can be reasonably processed by

CTD biocurators. For example, a recent query for the chem-

ical ‘arsenic’ at the PubMed interface from the National

Center for Biotechnology Information (NCBI) Web site

yielded >20 000 scientific articles. This is a common prob-

lem for biocurators. Consequently, text-mining is becoming

an important component in the curation pipeline for the re-

trieval and extraction of biological information at curated

databases (7), and has been shown to improve both the effi-

ciency and accuracy of manual curation (8). WormBase (9),

for example, has effectively leveraged machine learning

methods to categorize the literature (10).

To ensure that CTD biocurators review only those art-

icles that are most likely to yield curatable information

within the context of CTD’s structured curation paradigm,

staff assessed the feasibility and potential advantages of

implementing a text-mining pipeline (11). Based on the

results of this study, CTD staff designed, developed, docu-

mented and implemented a highly effective, fully func-

tional text-mining pipeline (12).

At the heart of the CTD text-mining pipeline is an in-

ternally developed, rules-based ranking algorithm that

scores each article with a document relevancy score (DRS).

Integral to the ranking algorithm is a set of locally in-

stalled, third party NER tools adapted for CTD use: Abner

(13) for gene NER, Oscar3 (14, 15) for chemical NER and

MetaMap (16) for disease recognition, as well as supple-

mentary chemical and gene recognition. The effective

deployment of these NER tools is essential to the success of

DRS-based scoring, in that the algorithm scores articles

based, in part, on the pervasiveness and spatial orientation

of CTD’s controlled vocabulary terms in the text of an art-

icle’s title and abstract.

CTD is constantly exploring new ways to improve the

effectiveness of DRS scoring. The BioCreative Workshop

2012 Track I/Triage track focused on document triaging

for CTD (17). More specifically, participants developed

tools that ranked articles in terms of their curatability, and

identified gene/protein, chemical/drug and disease actors,

as well as CTD interaction-related action terms. Top recall

scores for gene, disease and chemical NER were 49, 65 and

82%. Although the results were impressive, they were of

limited direct benefit to CTD because the NER tools were

written using a wide variety of technologies and within

technical infrastructures and architectures that would not

necessarily easily integrate directly into CTD’s existing

text-mining pipeline. In short, interoperability and integra-

tion complexity were major impediments to the direct ap-

plication of the NER-related aspects of the collaboration

to the CTD pipeline. Impediments included lack of NER

process modularity, operating system and programming

language incompatibility, tool configuration complexity,

lack of standardization of high-level inter-process commu-

nications and database management system-related

incompatibility.

One approach to potentially mitigate NER-related

interoperability and general integration issues is the use of

Web services for NER. Web services are designed to

accommodate interoperable machine-to-machine inter-

action over the Web (18). Rather than locally installing
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NER tools directly into the CTD asynchronous, batch-ori-

ented text-mining pipeline, Web services provide the cap-

ability for CTD’s text-mining pipeline to make simple

HTTP-based calls to remote NER Web services for gene/

protein, chemical/drug, disease and/or action term recogni-

tion (Figure 1). This approach tends to be inherently sim-

pler than direct local pipeline integration because the

technical details of the tools themselves are completely ab-

stracted by the Web service. Alternatively, the problems

imposed by local tool installation are many, ongoing and

nontrivial. Local tool installation and integration requires

text-mining pipeline developers to address tool-specific

issues such as operating system compatibility, program-

ming language interpretation/compilation-related environ-

ments, tool versioning maintenance and control, tool-

associated library compatibility, tool configuration main-

tenance, process modularity, inter-process communications

and multi-thread capacity. The potential benefits of imple-

menting a Web serviced-based approach to NER for CTD

and other Web-based resources from a conceptual perspec-

tive were sufficient to use Track 3 as a mechanism to fur-

ther study this approach.

The design of the track was predicated on one essential

requirement––although internally the Web Services could

be radically different from one another, externally all sites

should behave identically from a communications perspec-

tive and be completely interchangeable. It was therefore

critical that sites use one standard form of high-level

inter-process communications. As Track 3 tasks were being

analyzed and designed by CTD staff, a group of NCBI-led

collaborators were concurrently and coincidentally work-

ing on the development of BioC, a common interchange

format to represent, store and exchange data in a simple

manner between different language processing systems and

text-mining tools (19). The more CTD learned about and

participated in development of BioC, the more it became

clear that BioC’s simple, lightweight, flexible design, along

with its planned support across multiple programming

languages and operating environments, made it an

extremely attractive vehicle for Track 3 high-level inter-

process communications.

The CTD track of BioCreative IV focused on NER

interoperability and tool complexity abstraction.

Participants were asked to build interoperable, Web ser-

vice-based tools that would enable CTD to send text

passages to their remote sites to identify gene/protein,

chemical/drug, disease and chemical/gene-specific action

term mentions, each within the context of CTD’s con-

trolled vocabulary structure, using BioC for inter-process

communications. The challenge was to determine whether

teams such as CTD could benefit from text-mining tools

accessed remotely and developed using a common inter-

operable communications framework. And, if so, would

the response time associated with such tools be suitable for

asynchronous, batch processing-based text-mining using

technologies such as Web services?

World Wide Web

CTD Text Mining 
Pipeline Client

CTD Ac�on Term 
NER Web Service

Disease NER 
Web Service 

Chemical NER 
Web Service 

Gene NER 
Web Service

HTTP Post 
Request

HTTP Post 
Response

Title & AbstractTitle & Abstract

Annota�ons

Annota�ons

Annota�ons

PMIDs
Target
search

PMID
DRS

1 2 4

3

Figure 1. Web service-based NER logical design. Under a Web service-based conceptual design, (1) a list of potentially relevant PubMed IDs (PMIDs)

is secured via a search of PubMed, typically for a target chemical. (2) The list is processed asynchronously by batch-oriented processes. Rather than

performing NER using locally installed NER tools, (3) HTTP calls containing text passages are made to remote Web services; the results of NER are

used as a key component in document ranking algorithms. (4) PMIDs are then assigned a DRS by the document ranking algorithms.
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Methods and materials

Web service architectural style

Representational State Transfer (REST) was selected as the

architectural style for the participant Web services. REST

was originally designed to abstract the architectural elem-

ents of distributed systems by enabling client processes to

ignore the details of component implementation and proto-

col syntax to instead focus on the role of the components,

enhancing simplicity by providing a clean separation of

concerns, and hiding the underlying implementation of re-

sources and communication mechanisms (20). The primary

purpose of REST-compliant Web services is to manipulate

XML representations using a uniform set of stateless oper-

ations (21); the term stateless in the Web service context

means that requests are processed without the knowledge

of any prior requests. The stateless nature of REST tends

to improve scalability because the Web service need not

store state information between requests, allowing the

server component to quickly free resources; moreover, the

stateless feature simplifies implementation because the ser-

ver need not manage resource usage across requests (20).

Although other Web service-based options were available,

the timely emergence of BioC, coupled with REST’s XML-

centric nature and other attractive design features, made a

REST/BioC-compliant architecture well positioned for

Track 3 use.

Training phase

For participants to gain an understanding of CTD curation

and associated NER requirements, participants were pro-

vided with a comprehensive set of training materials in

May 2013. A detailed document, entitled Summary Of

Curation Details For The Comparative Toxicogenomics

Database, was distributed to participants (http://ctdbase.

org/reports/CTD_curation_summary.docx). In addition, a

training data set was made available that consisted of 1112

articles previously manually curated by CTD biocurators,

and included 3511 distinct curated genes, 3144 chemicals,

1965 diseases and 2521 chemical/gene-specific action

terms, all within the context of 9877 manually curated

interactions (Table 1). The training data set was provided

in a single BioC XML-based file, and contained important

details associated with the articles in the data set, including

the PubMed ID, title, abstract, gene, chemical, disease and

action term annotations, and a list of associated curated

interactions. References to general BioC information, BioC

DTDs and a key file that described the BioC XML format

in the context of the training data set, were also provided

to participants, as were sample Web service requests and

responses for each NER category (Figure 2). Finally, the

complete CTD controlled vocabularies, in multiple formats

and including both terms and synonyms, were provided for

each of the NER categories.

In July 2013, the BioCreative IV, Track 3 NER Testing

Facility Web site was released (Figure 3). This testing facil-

ity provided a front-end to a CTD Web service that, on

execution, called the participant’s Web service, enabling

participants to test their Web services against the training

data set. More specifically, the participants simply entered

a PubMed ID (from the training data set), the URL of their

Web service, an NER type (i.e. gene, chemical, disease or

action term) and report format-related information. This

would cause CTD’s Web service to call the participants

Web service using BioC XML (associated with the speci-

fied PubMed ID) for inter-process communications; CTD’s

Web service would in turn receive text-mined annotations

from the participant’s Web service using BioC XML

(Figures 1 and 2). CTD’s Web service would then process

the annotations and compute the results against the cura-

ted data set, providing the user with recall, precision, re-

sponse time and a detailed list of curated terms, text-mined

terms and text-mined term hits (i.e. curated terms success-

fully identified by the text-mining tools—either by a syno-

nym to the term or by the term itself). The participants

were also given the opportunity to bypass the Web-based

front-end and call the CTD Web service directly via appli-

cation-to-application HTTP GET calls; this feature

enabled users to run batch processes against the entire

training data set. The testing facility was heavily used,

receiving >260 000 hits from its inception through comple-

tion of the training phase.

Testing phase and methodology

On 19 August 2013, participants were asked to submit to

Track 3 organizers Web service URLs for testing, as well as

brief system descriptions. CTD staff then tested the Web

services against a test data set of 510 articles manually

curated by CTD staff, using a client process specifically

developed for testing. The process tested one abstract at a

Table 1. Training and test data sets

Training data set Test data set

Total scientific articles 1112 510

Distinct genes/proteins 3511 1122

Chemicals/drugs 3144 1192

Diseases 1965 943

Action terms 2521 966

Interactions 9877 3953

An overview is provided of the training and test data sets.
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time, and participants were unaware of the articles to be

tested before testing. The test data set included 1122 dis-

tinct curated genes, 1192 chemicals, 943 diseases and 966

chemical/gene-specific action terms, all within the context

of 3953 manually curated interactions (Table 1).

Recall, precision, balanced F-score (sometimes referred

to as F1 score or F-measure) and response times were cap-

tured for each Web service call. Recall scores were calcu-

lated by dividing the number of distinct curated actors

identified by the text-mining tools—either by a synonym to

the term or by the term itself—by the total number of dis-

tinct curated actors. Precision scores were calculated by

dividing the number of distinct curated actors identified by

the text-mining tools by the number of distinct text-mined

terms. Balanced F-scores were calculated as follows:

Balanced F � Score ¼ 2� Recall � Precision

Recall þ Precision

Balanced, rather than weighted, F-scores were calcu-

lated because CTD equally values recall and precision.

Since NER tools are currently used to rank documents at

CTD, it is important to maximize recall while at the same

time minimizing false positives. Other groups may have

different priorities and therefore weight, calculate and

evaluate metrics differently.

Response times were calculated by measuring the dur-

ation between the call from CTD to the respective Web ser-

vice, and receipt of communications back to CTD from the

Web service. All testing was performed by CTD’s software

engineer, and was completed at the Mount Desert Island

Biological Laboratory in Bar Harbor, Maine, USA. Micro-

averaging was used for aggregate recall, precision, F-score

and response time.

Limitations

It is important to note that the standard text-mining

metric calculations of precision and recall may be im-

perfect within the context of CTD curation. The gold

standard data were composed of curated—rather than

TM PIPELINE NER TOOL

Request: Response:

Request

Response

Figure 2. BioC-based high-level inter-process communications. A sample request in BioC format is sent by Web service from the text-mining (TM)

pipeline to the NER tool (green arrow). The PubMed ID, title, abstract and designated key file describing the semantics of the data are included within

the XML request (left, green box). A chemical-specific response is returned from the NER tool to the TM pipeline (blue arrow). The NER Web service

reads the BioC XML and attempts to identify chemicals in the title and abstract. Here, two chemical entities (fenfluramine and dexfenfluramine) are

identified as BioC annotation objects for the NER chemical category in the response (right, blue boxes).
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mentioned—gene/protein, disease and chemical/drug

actors within each abstract. There are likely to be instances

where valid actors are not actually involved in the types of

interactions captured by CTD curators; furthermore, there

are also likely instances where curated actors are identified

by curators only in the full text of the article.

Consequently, the complete universe of valid actor men-

tions specifically resident within each title and abstract is

not recorded by CTD curators, and is therefore unknown.

In addition, the location of the curated actors within the

title and abstracts is not tracked by CTD curators; conse-

quently, the specific location of the actors identified by the

NER tools was not tested.

Results and discussion

Twelve groups participated (Table 2), submitting a com-

bined total of 44 Web services for testing. Of the 44 Web

services submitted, 39 were successfully tested against the

complete test data set, including 9 gene-, 10 chemical-, 10

disease- and 10 action term-based NER Web services. The

remaining five Web services were fully operational, but

were unable to process the complete test data set for vary-

ing reasons. In three of the five cases the vast majority of

PubMed articles in the data set were successfully pro-

cessed; however, it appeared as though preprocessing/

indexing of the individual PubMed abstracts was necessary

before actual submission, and some of the abstracts in the

test data set had not yet been preprocessed. The reasons

for failure of the remaining Web services were unclear.

Gene/protein NER results

Among the 12 submissions for gene/protein NER, nine

were successfully tested. As shown in Figure 4, average re-

call was 62% and ranged from 32 to 89%. Average preci-

sion was 28% and ranged from 6 to 54%. Average

balanced F-scores were 36% and ranged from 11 to 61%

(Figures 4 and 5). Interestingly, the two groups with the

highest recall scores also had the lowest precision and

Figure 3. BioCreative IV Track 3 NER Testing Facility. Participants were provided with the BioCreative IV Track 3 NER Testing Facility developed by

CTD. This testing facility provided a front-end to a CTD Web service that on execution called the participant’s Web service using BioC XML associated

with a specified PubMed ID for inter-process communications (top left screenshot). CTD’s Web service would in turn receive text-mined annotations

from the participant’s Web service (using BioC XML). CTD’s Web service then processed the annotations and computed the results against the cura-

ted data set, providing the user with recall, precision, response time and a detailed list of curated terms, text-mined terms and text-mined term hits

(bottom right screenshot).
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F-scores, suggesting a much stronger emphasis placed on

recall at the expense of precision. The average response

time was 9.4 s and ranged from 0.14 to 61 s, with a large

standard deviation of 19.6 s (Figure 6).

Chemical/drug NER results

Among the 11 submissions for chemical/drug NER, 10

were successfully tested (Figure 7). Average recall was

78% and ranged from 57 to 92%. Average precision was
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Figure 4. Gene/protein named-entity recognition. Gene recall (blue), precision (red) and balanced F-score (green) results are shown for each partici-

pating group (anonymously identified by group number on x-axis). Average scores for each metric (dotted lines) are also provided.
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Figure 5. Balanced F-scores by group. Balanced F-score results for each NER category, as well as a combined average, are provided for each partici-

pating group (anonymously identified by group number on x-axis). Average scores for each metric (dotted lines) are also provided.
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45% and ranged from 20 to 75%. Average balanced

F-scores were 54% and ranged from 33 to 74% (Figures 5

and 7). The average response time was 4.7 s and ranged

from 0.14 to 27 s, with a standard deviation of 8.8 s

(Figure 6).

Disease NER results

Among the 11 submissions for disease NER, 10 were suc-

cessfully tested (Figure 8). Average recall was 56% and

ranged from 39 to 82%. Average precision was 34% and

ranged from 3 to 48%. Average balanced F-scores were

39% and ranged from 6 to 51% (Figures 5 and 8). The

average response time was 2.9 s and ranged from 0.13 to

22 s, with a standard deviation of 6.6 s (Figure 6).

Chemical/gene action term NER results

All of the 10 submissions for chemical/gene action NER

were successfully tested (Figure 9). Average recall was

50% and ranged from 31 to 84%. Average precision was

33% and ranged from 11 to 52%. Average balanced

F-scores were 37% and ranged from 18 to 52% (Figures 5

and 9). The average response time was 5.1 s and ranged

from 0.13 to 24 s, with a standard deviation of 9.4 s

(Figure 6).

Aggregate F-score results

A total of 10 groups submitted 39 Web services that were

successfully tested. Average combined balanced F-score

was 41% and ranged from 19 to 54% (Figure 5).

Response time results

The combined average response time across NER catego-

ries was 5.4 s per article, with a standard deviation of 9.9 s

(Figure 6). The fastest combined average response time

was 0.14 s and the slowest was 32.8 s. The variability ap-

peared to be a function of the NER process itself and/or

the hardware on which the process was run. There was no

apparent correlation either with geographic area or NER

recall or precision performance.

Combined results

Figure 10 depicts the relationship between recall and preci-

sion, providing the combined results by group within NER

category. For some groups there appeared to be a clear

trade-off between recall and precision (e.g. 203), whereas

for other groups, trade-offs were less apparent (e.g. 184

and 199). Note also that the gene and chemical categories

were highly stratified, whereas the disease NER results
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Figure 8. Disease named-entity recognition. Disease recall (blue), precision (red) and balanced F-score (green) results are shown for each participat-

ing group (anonymously identified by group number on x-axis). Average scores for each metric (dotted lines) are also provided.
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were more tightly organized. Figure 11 similarly contrasts

balanced F-score with combined average response time by

group within NER category. There was no clear relation-

ship between response time and F-score.

Discussion

The results of Track 3 testing clearly validate the concep-

tual feasibility of integrating Web service-based NER func-

tionality into asynchronous batch-oriented text-mining

pipelines. The participant NER performance and Web ser-

vice response times were more than adequate for such use

in most cases. In making these assertions it must be empha-

sized that, within margins, equal weight was placed on

response times as was placed on NER performance in eval-

uating Track 3. Although response times might seem sec-

ondary to NER performance, a limiting factor to remote

processing of the type proposed here is clearly response

time: if the best NER tools have inadequate response times,

they are of little use to resources like CTD. At times the

CTD text-mining pipeline processes tens of thousands of

abstracts; poor response times can equate to days to pro-

cess large data sets even in cases where multi-threading is

introduced. For example, the worst gene NER response

time was 1 min per article, which for a 6000 article data

set equates to 100 h of sequential processing for gene NER

alone, whereas a response time of 5 s equates to a much

more manageable 8.3 h of sequential processing. CTD tar-

gets an average response time of �10 s for non–thread-safe

tools.

Among the most positive findings of Track 3 is that nei-

ther geographic location nor NER performance appeared

to play a role in response times; some of the best NER-

performing groups had the fastest response times. Group

184, for example, delivered strong performance in every

NER category with fraction-of-a-second response times.

Group 199 delivered similar results with even faster re-

sponse times, and some of the more remote groups pro-

vided among the fastest response times (specifics are not

provided to maintain group anonymity). One of the

group’s response times was largely dependent on whether

the article in question had been pre-processed; once the

article had been indexed, the response time moved from in

excess of 10 s down to fractions-of-a-second for the re-

maining major NER types. Even the group with the slowest

response times, 185, delivered above average NER recall

and precision performance and attributed their slow

response times to inferior hardware rather than anything
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Figure 9. Action term named-entity recognition. Chemical/gene action term recall (blue), precision (red) and balanced F-score (green) results are

shown for each participating group (anonymously identified by group number on x-axis). Average scores for each metric (dotted lines) are also

provided.
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inherent to the NER process itself. From a conceptual per-

spective, the results were encouraging, providing a proof-

of-concept that Web services-based NER is feasible for

asynchronous processing.

Chemicals/drugs continue to be the strongest actor

NER recall category on average (78%), mirroring past

CTD-related studies (11, 12, 17), followed by genes (62%)

and diseases (56%). One of the reasons disease NER may

be more difficult than the other major vocabularies is be-

cause there might be more ways in which authors can ex-

press a disease term than is the case with the other terms.

For example, a study of the CTD controlled vocabularies

shows that there are on average many more synonyms for

disease terms (6.4) than for genes/proteins (3.6) and chem-

icals/drugs (3.0). This trend suggests that there are more di-

verse ways to describe disease phenomena. As disease

vocabularies become better defined, standardized and

more commonly accepted (3), this trend might decrease,

and the NER could increase to a comparable level to what

is currently seen for genes and chemicals.

The performance of action terms NER was far superior

to the BioCreative 2012 results (17), but continued to be

somewhat disappointing; although the top recall score was

84%, the precision for that score was 16%, one of the low-

est in the group. Because the population of potential values

is small for action terms in relation to the other NER cate-

gories, greater emphasis is placed on precision scores, and

the 33% average precision score was disappointing. One

exception was Group 185, which scored >50% in both re-

call and precision. Action term recognition is an extremely

important area for CTD in that the ability to accurately

recognize these terms would significantly improve CTD’s

ability to identify articles that contain curatable informa-

tion. More modeling, analysis and design work needs to be

done by CTD, either internally or in conjunction with

other collaborators, to develop NER algorithms and tools

to better recognize actions terms when they appear in text.

The performance of several tools integral to Track 3

merit note. BioC proved to be an extremely robust, effect-

ive tool in standardizing high-level inter-process communi-

cations. The framework provided all the functionality

required for Track 3, and did so in an unobtrusive fashion:

the vast majority of the participants required little, if any,

help from the organizers with respect to BioC, there were

Figure 10. Recall and precision. Combined average recall (x-axis) and

precision (y-axis) results are shown for each participating group (color-

coded by group number) within major NER category. For some groups

there appeared to be a clear trade-off between recall and precision (e.g.

203), whereas for other groups trade-offs were less apparent (e.g. 184

and 199).

Figure 11. Balanced F-score and response time. Combined average bal-

anced F-score (x-axis) and response time (y-axis) results are shown for

each participating group (color-coded by group number) within major

NER category. There was no clear relationship between response time

and F-score. Note: the response time in seconds (y-axis) uses a logarith-

mic scale.
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few syntax errors in the BioC XML returned from the Web

services, and those syntax errors that did exist, for the

most part, were quickly corrected. The fact that CTD did

not have to create an application-specific inter-process

communications framework was very beneficial to the

track, and in the end the tools developed for the track pro-

vided a level of interoperability that would not have other-

wise existed in the absence of BioC.

The REST-compliant architecture also proved to be an

excellent design choice because its design goal to abstract

the architectural elements of distributed systems (20) com-

plemented the Track 3 goal. In addition, the fact that so

many fully operational NER Web services were set up

within a few months, communicating via a common frame-

work, speaks to the usability of the REST architecture style.

The NER Testing Facility Web site was heavily used

and successful in ensuring that the groups were producing

Web services that were in compliance with the require-

ments established for Track 3. The fact that all 12 groups

provided functional Web services (if not fully functional

against the entire test data set for two of the groups) lends

support to the effectiveness of the testing facility. The site

provided a simple way to test applications during the train-

ing phase of the project to ensure the correct syntax. The

feature that enabled users to bypass the Web-based front-

end and call the CTD Web service directly via application-

to-application HTTP GET calls provided participants with

the ability to process and refine their NER performance

against the entire training data set.

From a conceptual perspective, we would be remiss if

we did not note that a Web service-based approach has

shortcomings and limitations that should not be mini-

mized, from both the server side and the client side. From

the server side, the implementation of Web services clearly

presents logistical issues for NER tool providers. These

providers must not only develop the tool itself but must

also create the Web service, make it available for use, and

provide the necessary facilities and support for processing

on an ongoing basis. It is well understood that these re-

quirements may not be logistically feasible for all groups.

However, in most cases the complexity imposed by making

the tool available via Web services pales in comparison

with the complexity imposed by developing the tool itself;

the fact that so many effective Web service-based tools

could be developed in conjunction with Track 3 in such a

short period certainly validates this assertion. Moreover,

modularizing and packaging tools for direct local third

party integration presents its own set of significant logis-

tical issues for the tool provider. The results of Track 3

strongly indicate that those groups that are interested in

having their NER tools reach and benefit the broader re-

search community, and have the wherewithal to develop

and support their tools reliably within the context of a

Web service framework, should strongly consider a Web

service-based approach to dissemination.

From the client side, implementing a text-mining pipe-

line that integrates Web service-based calls to external

NER tool providers certainly cedes some control of the

pipeline to the Web service providers, and introduces the

inherent risk of reliance on third parties. Issues such as

Web service availability, support, robustness and response

time variability must be carefully considered. Moreover,

the viability of the organization to provide such services

over the long term is also an important consideration.

However, assuming reliable and effective NER Web ser-

vices are available, and strong collaborative relationships

can be developed with the Web service providers, the re-

sults of Track 3 clearly indicate that such an architecture

can be simply and effectively implemented, has many other

incumbent advantages and should be strongly considered

by pipeline developers.

Looking ahead, CTD plans to pursue a Web service-

based approach as a result of the Track 3 findings. More

specifically, CTD plans to collaborate with the top per-

forming teams in the individual NER categories, integrat-

ing their tools into the CTD text-mining pipeline. Testing

will then be conducted to determine if the integration of

these tools, either individually or in combination within

NER categories, improves DRS scoring effectiveness and

curation efficiency (through the identification and high-

lighting of genes, chemicals, diseases and action terms resi-

dent within the text being curated). CTD’s use of BioC will

be expanded, requiring added sophistication beyond that

used for Track 3, including the addition of text/CTD con-

trolled vocabulary translations, along with the specific

locations of the terms within the text passages, and concept

IDs. If testing is successful, these tools will be incorporated

in earnest into the CTD text-mining pipeline.

In conclusion, the results of Track 3 underscore the

extraordinary ability of Web services to abstract devel-

opers from the complexity of underlying computational

systems, freeing them to purely focus on functional per-

formance. In total, 44 platform-independent Web services,

spanning four continents, encompassing four major NER

categories, with varying levels of recall and precision, all

using BioC as an interoperable common communications

interchange framework, are now freely available for use;

this is a significant accomplishment. One can only imagine

how much more complicated and time-consuming it would

have been for CTD to have attempted to test 44 independ-

ent NER tools by installing them locally, and in the

absence of a common communications interchange frame-

work; such an environment would likely have rendered

testing, for all practical purposes, infeasible.
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The fact that Track 3 has proven to be so successful

brings with it the possibility that text-mining groups like

CTD could mix-and-match NER functionality based solely

on the expertise and performance of the NER provider, ra-

ther than on the characteristics of the respective tool’s

underlying technical architecture or geographic locale.

Citing and linking to CTD

To cite CTD, please see http://ctdbase.org/about/publica

tions/#citing. Currently, 51 external databases link to or

present CTD data on their own Web sites. If you are inter-

ested in establishing links to CTD data, please notify us

(http://ctdbase.org/help/contact.go) and follow these in-

structions: http://ctdbase.org/help/linking.jsp
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