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Citation details: Andrés-León,E., Peña,D.G., Gómez-López,G., et al. miRGate: a curated database of human, mouse and rat

miRNA–mRNA targets. Database (2015) Vol. 2015: article ID bav035; doi:10.1093/database/bav035

Received 8 January 2015; Revised 1 March 2015; Accepted 20 March 2015

Abstract

MicroRNAs (miRNAs) are small non-coding elements involved in the post-transcriptional

down-regulation of gene expression through base pairing with messenger RNAs (mRNAs).

Through this mechanism, several miRNA–mRNA pairs have been described as critical in the

regulation of multiple cellular processes, including early embryonic development and patho-

logical conditions. Many of these pairs (such as miR-15 b/BCL2 in apoptosis or BART-6/BCL6

in diffuse large B-cell lymphomas) were experimentally discovered and/or computationally

predicted. Available tools for target prediction are usually based on sequence matching,

thermodynamics and conservation, among other approaches. Nevertheless, the main issue

on miRNA–mRNA pair prediction is the little overlapping results among different prediction

methods, or even with experimentally validated pairs lists, despite the fact that all rely on

similar principles. To circumvent this problem, we have developed miRGate, a database

containing novel computational predicted miRNA–mRNA pairs that are calculated using

well-established algorithms. In addition, it includes an updated and complete dataset of se-

quences for both miRNA and mRNAs 30-Untranslated region from human (including human

viruses), mouse and rat, as well as experimentally validated data from four well-known data-

bases. The underlying methodology of miRGate has been successfully applied to independ-

ent datasets providing predictions that were convincingly validated by functional assays.

miRGate is an open resource available at http://mirgate.bioinfo.cnio.es. For programmatic

access, we have provided a representational state transfer web service application program-

ming interface that allows accessing the database at http://mirgate.bioinfo.cnio.es/API/

Database URL: http://mirgate.bioinfo.cnio.es
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Introduction

In the past few years, the functional role of non-coding

RNAs have been associated to crucial cellular processes,

such as gene regulation (1) and chromatin modification

(2). This evidence has been supported by the Encyclopedia

of DNA Elements project which revealed that most of our

non-coding genome is actively transcribed and that a sub-

stantial percentage of the genome is active at the transcrip-

tional level (3). Among non-coding RNAs, the microRNAs

(miRNAs) family has become relevant by their important

regulatory role. miRNAs are small non-coding elements of

�22 nt involved in the post-transcriptional fine-tuning

regulation of gene expression, either through messenger

RNA (mRNA) degradation or by translation prevention

(4, 5). Recently, other mechanisms such as elongation in-

hibition or ribosome drop-off (premature termination)

have been described (5). miRNAs have also been associ-

ated with many other relevant functions: apoptosis, cell

growth, cell proliferation and differentiation in prokary-

otes and eukaryotes organisms (6, 7). Several independent

studies have predicted that miRNAs regulate 20–30% of

human genes, but some authors raise this estimate consid-

erably to 92% (8, 9). Alterations of the expression patterns

of multiple miRNAs have been associated to pathological

conditions such as cancer (10, 11), neurodegenerative dis-

eases (12) and heart diseases (13).

Basic miRNA mechanism of action relies on binding

their seed sequence (an evolutionary-conserved region of

5–7 nt at the 50-end of the miRNA) to a complementary se-

quence in the 30-UTR of its targeted mRNA (9). Sometimes

additional pairing is needed at the 30 of the miRNA to

compensate non-Watson–Crick pairs called wobbles (14).

Besides the complementarity and the conservation of the

pairing sequences, some other factors may influence the

pairing specificity and underlying function. For example,

target sites surrounding long UTR edges were associated

with lower expressed protein levels than those around the

centre of the sequence (15). Besides, functional targets

show a high proportion of adenines and uracils next to the

binding site (16). Other basic factors highly related to ac-

tive targets are miRNA cooperation (17), where a plausible

effect in regulation is identified when several miRNAs are

simultaneously bound to the same mRNA (rather than sep-

arately), and thermodynamic stability, where favourable

energy is determined among the bound and unbound RNA

double strand (18).

Several algorithms offer target prediction based on the

combination of these conditions. They predict targets using

miRNA and 30-UTR sequences from selected protein coding

transcripts known at that moment. The distinct approaches

provide scores, energy or conservation values to highlight

the reliability of the prediction. As each tool employs

different criteria that govern a functional target, several inte-

grative approaches emerged to offer these already calculated

predictions combined, to ensure all possible restrictions.

Some examples of these valuable efforts are MiRonTop

(19), mirGator (20), mirWalk (21), MAGIA2 (22) or

microRNA and mRNA Integrated Analysis (23). Many of

them emphasize two of the most disturbing facts in the field,

which are the lack of overlap between the different target

prediction methods and the poor reliability found when pre-

dictions are validated using proteomics techniques.

The development of a tool based on a complete, consist-

ent and unique dataset could avoid such problems increas-

ing the reliability of miRNA and gene variants target studies

(24). For this reason, we have developed miRGate, which

uses a common dataset—rather than download pre-com-

piled data—to compute all possible targets from miRNAs

sequences available in miRBase, and a complete 30-UTR se-

quence dataset retrieved from EnsEMBL. Additionally, it

also stores information of experimentally validated targets

to test the reliability of predicted targets and provides valu-

able information to distinguish weak predictions.

To our knowledge, miRGate is the only available tool

that addresses the little overlap among different targets

using a common and an updated dataset. miRGate has

been designed to jointly analyse miRNA and gene or gene

variants lists in human, (including human viruses, such as

Epstein–Barr and Kaposi sarcoma-associated herpes virus),

mouse and rat to provide a novel catalogue of accurate in

house predicted miRNA targets and programmatically ac-

cess to the predictions in a massive way through RESTful

web services.

Methods

miRGate composed of diverse steps where data from dif-

ferent sources are processed and used as input for several

algorithms. Results from these tools along with external in-

formation are converted and stored in a relational data-

base. Scores from any individual prediction obtained from

the different tools are processed to allow a comparison

among algorithms results.

A schematic representation of all steps is shown in the

Supplementary Figure S1.

Sequence space

To compute high reliable miRNA–mRNA targets, we cre-

ated a consistent dataset of updated and complete

sequences for miRNAs [based on miRBase 20 (25)] and

30-UTR sequences for human, mouse and rat [based on

EnsEMBL 74 (26)]. A complete summary of the 30-UTR se-

quence dataset is presented in Table 1. Unlike other
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databases, we include in miRGate all known isoforms for

all known genes stored in EnsEMBL, as each isoform can

have an exclusive 30-UTR. This contains, e.g. non-coding

genes, pseudogenes [as they have been related to the regu-

lation of the activity of cancer-related genes (27)] and

mitochondrial RNAs, among others biotypes catalogued in

Havana. A full comparison of sequences included in other

databases/algorithms versus miRGate is presented in

Supplementary Table S1. The untranslated sequences data-

set used in this work are retrieved along with all provided

annotations: HUGO Gene Nomenclature Committee name

for human genes, gene and transcript names, genomic co-

ordinates and Havana biotypes among others. Since not

every transcript has a known UTR sequence, or some are

smaller than 50 bp, 130 bp downstream from the end of

the last exon were used as predicted UTR, as this size cor-

responds to the mode length of all known 30-UTRs in

human, mouse and rat (Figure 1). Additionally, miRGate

provides protein structural information, functional and se-

quence conservation information for gene-oriented high

throughput experiments using Annotating principal splice

isoforms (28), which defines a principal variant: the gene

isoform which is expressed in most of the tissues, for each

gene in human, mouse and rat (29, 30).

For miRNA sequences, we rely on miRBase 20 (25),

which is the central database for miRNA sequence annota-

tion and nomenclature registry. MiRBase 20 contains 24 521

pre-miRNAs, expressing 30 424 mature sequences in 206 spe-

cies. In miRGate, we stored human, human viruses, mouse

and rat miRNA sequences (Table 2), as well as other avail-

able information such as cleavage data from pre-miRNAs to

mature miRNAs, genomic coordinates and family names.

Algorithms

One of our main motivations is to be able to determine ac-

curate and novel targets from our own dataset. Although

there are many freely available methods that provide

miRNA target predictions for standard gene sequences,

just a few of them allow prediction on provided sequences.

We compute miRNA target predictions using: (i)

miRanda (31), which uses dynamic programming score

alignments based on the complementary of nucleotides; (ii)

Pita (32), which identifies full complementary seeds for

each miRNA and calculates favourable energy among the

bound and unbound double strand; (iii) RNAHybrid (33),

that is based on favourable hybridization sites avoiding

intramolecular duplexes; (iv) Microtar (34) that assess tar-

get sites based on RNA duplex energy calculation and (v)

TargetScan (35), which scores predictions based on seed

match, binding site localization and target conservation

among the species. For Pita conservation score calculation,

Phastcon hidden Markov model phylogenetic information

(36) was added. In the case of TargetScan, EnsEMBL

alignments for mammals were used (26). All information

provided by the methods is stored, including target

sites, energy scores, conservation scores, miRNA and

Table 1. Total number of 30-UTRs used in miRGate versus other databases/algorithms

Name Build, year Coding genes Nc-genes Pseudogenes 30-UTR

miRanda NCBI37, 2009 19 778 — — 34 592

TargetScan NCBI37, 2009 18 414 — — 30 932

Pita NCBI36, 2006 18 582 — — 24 086

PicTar NCBI35, 2005 20 254 — — 20 254

miRGate NCBI37, 2009 20 805 22 966 14 181 196 501

Figure 1. Distribution of known 30-UTR sizes for human, mouse and rat.

The statistical mode for human (142 bp), mouse (131 bp) and rat

(122 bp). The average of these three values, which is �130 bp, was used

from unknown 30-UTRS.

Table 2. Total number of mature miRNAs included in the

different datasets

Name human mouse rat Database Version

miRanda 1100 717 387 miRBase 15

TargetScan 1433 722 — miRBase 17

Pita 692 500 — miRBase 11

PicTar 81 81 81 Rfam 5

miRGate 2680 1983 763 miRBase 20
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mRNA coordinates and it is available for users. A complete

description of the features included in each algorithm can

be consulted in Table 3.

Experimentally validated data

To contrast the predictions with experimentally validated

miRNA–mRNA targets, miRGate also compiles informa-

tion obtained with several validation methodologies and

extracted from four different public databases: (i) Tarbase

(37) and (ii) miRTarbase (38), which relay on text mining

techniques to identify validated targets; (iii) miRecords

(39), that manually curates targets mentioned in those pub-

lications selected using a systematic documentation strat-

egy and (iv) OncomirDB (40), that publishes validated

miRNA–mRNA targets by manually curating 9000 ab-

stracts. In the case of human, the validated dataset from

Tarbase (37), miRTarBase (38), miRecords (39) and

OncomirDB (40) comprises 79 046 targets where only

40 991 (52%) of the mRNA–miRNA pairs are unique

(Figure 2). A more detailed description of the experimental

databases is shown in Table 3.

Table 3. Summary of the main features, scores and versions of the algorithms included in miRGate

Name Type Score Version Features

miRanda Prediction tool Energy>140 kcal 3.3a miRanda uses dynamic programming to score alignments

based of the complementarity of nucleotides, allowing G-

U wobble pairs.

Pita Prediction tool Conservation>0.5 NA Identifies initial full complementary seeds for each miRNA

in the mRNA and computes the free energy of the un-

bound and bound double strand. It uses a phylogenetic

hidden Markov model (34) called Phastcons; to filter out

less conserved predicted target sites.

RNAHybrid Prediction tool Score>0 2.2 Finds energetically most favourable hybridization sites

avoiding intramolecular hybridization. Poisson approxi-

mation of multiple binding sites and calculation of effect-

ive numbers of orthologous targets in comparative

studies of multiple organisms are assessed.

microtar Prediction tool Energy<0 Kcal NA A program based on mRNA sequence complementarity and

RNA duplex energy prediction by using Vienna package,

assessing the impact of miRNA binding on complete

mRNA molecules.

TargetScan Prediction tool Conservation in

mammals

6 This algorithm requires perfect seed pairing to score the

predictions according the type of the seed match, local

AU contribution and mRNA binding site localization.

Tarbase Validated target

database

— 6 Contains detailed information for each miRNA–gene inter-

action, ranging from miRNA and gene-related facts to in-

formation specific to their interaction, including the

experimental validation methodologies and their out-

comes. All database entries are enriched with function-

related data, as well as general information derived from

external databases such as UniProt, Ensembl and RefSeq.

miRTarbase Validated target

database

— 4.5 It contains more than 51 000 validated miRNA-gene inter-

actions which are collected by manually surveying pertin-

ent literature retrieved by means of a text mining process

aiming at research articles related to functional studies of

miRNAs

miRecords Validated target

database

— — miRecords hosts a large, high-quality manually curated

database of experimentally validated miRNA-target

interactions with systematic documentation of experi-

mental support for each interaction using text mining

techniques.

OncomirDB Validated target

database

— — OncomirDB contains targets that have been validated and

published in �9000 abstracts. A total number of 2259

manually curated entries with direct experimental evi-

dences were stored.

Page 4 of 9 Database, Vol. 2015, Article ID bav035

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav035/2433167 by guest on 20 M

arch 2024

,
-
1
2
 3
4
-
,
-


Results

Standardized prediction meta-score

The list of predictions (see Table 4 for a summary) is ranked

by a Z-score that was computed by standardizing individual

raw scores in each prediction among all predictions col-

lected in the database. When more than one prediction algo-

rithms in miRGate predict a identical target for the same

miRNA and 30-UTR in equivalent genomic coordinates, the

results are combined generating a consensus weighted score

(CWS) as it has been previously described (41).

CWS ¼

X

i

Zi �Wi

X

i

Wi

For each identical prediction, obtained for a different algo-

rithm, let Zi be the standardized score produced by that

tool and Wi corresponds to the probability that an above-

the-score prediction is not a false positive, given the com-

plementary cumulative distribution of scores shown by the

ith tool when comparing its predictions against a dataset

of validated targets.

This approach was found to improve the reliability of

predictions from different methods that although different

in nature, reflects in this particular case, the probability of

a miRNA to bind to a complementary sequence of an

mRNA region.

Validation

Although miRGate uses established and well-known pre-

diction algorithms, we evaluated the predictions obtained

by those methods against a dataset of experimentally vali-

dated targets. Z-scores and consensus-weighted scores

were plotted using ROC (receiver operating characteristic)

(42). The integrative approach designed in miRGate out-

performs the result of each method separately (Figure 3).

Outperformance increases more drastically when miRGate

predictions are then compared against available pre-com-

piled targets, obtaining an average increment of 10%. The

true-positive rate is even better, when the false positive rate

is over 0.6. (Figure 4).

We also observed that better accuracy is obtained when

target prediction results are contrasted with the more con-

fident targets. In that sense, datasets were divided accord-

ing to a reliability criteria: (i) OncomirDB (40) as a

manually curated database (highly reliable), (ii) miRecords

(39) as a partially curated dataset (medium reliability) and

Figure 2. Venn diagram to represent the overlap between OncomirDB,

Tarbase, miRTarBase and miRecords, four databases that compile experi-

mentally validated miRNA–mRNA targets through article classification.

Table 4. Summary of the number of predictions organized by

prediction tool and organism resulting of the execution by

miRGate

human mouse rat

miRanda 34 838 559 16 164 311 1 372 897

Pita 773 112 313 113 52 281

RNAHybrid 36 832 689 10 390 354 536 248

microtar 6 049 837 1 750 058 3 348 100

Targetscan 7 270 936 5 186 036 417 501

TarBase 36 853 20 513 7

miRTarbase 39 118 9 314 307

miRecords 1 198 227 —

OncomirDB 2 368 1 917 —

miRGate 85 844 670 33 835 843 5 727 341 125 407 854

Figure 3. ROC curve illustrating the performance of miRGate and each

individual method separately, over four datasets of validated targets:

OncomirDB, miRecords, Tarbase and miRTarBase. The AUC obtained

for each method is: microtar: 0.528, RNAHybrid: 0.609, miRanda: 0.632,

TargetScan: 0.638, Pita: 0.548 and miRGate: 0.704.
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(iii) a combined dataset comprised two text mining predic-

tion sources, mirTarbase (38) and Tarbase (37), as low re-

liability. The area under the curve (AUC) rises from 0.6, in

low reliable, to 0.78 in high confident targets (Figure 5).

In summary, the incorporation of this complete dataset

in miRGate has improved the prediction reach of the indi-

vidual methods (a 10–21% improvement in performance),

as seen by the comparison of the whole set versus individ-

ual methods when using experimental confirmed datasets.

This improvement is even notorious when we compared

the data in our database against the pre-compiled datasets

that other integrative methods employ.

Moreover, miRGate has been successfully applied to

independent datasets providing predictions that were vali-

dated using different experimental techniques from diverse

transcriptome profiling technologies (such as microarrays,

RNA-Seq or miRNA-Seq). To date, eight different works

have successfully validated miRGate targets using different

experimental procedures (43–50).

Web interface

miRGate database can be accessed through a web page to

search for potential targets to their genes and/or miRNAs

of interest.

The page is designed as an intuitive step-by-step form

where users fill basic information such as organism and

gene/miRNA names using gene symbols, miRNAs names,

miRNAs accessions, EnsEMBL genes, EnsEMBL transcript

Identificators or even probe names from different expres-

sion array platforms. To unify entity nomenclature and

make easier the data introduction, the web page includes a

type-ahead function that allows selecting miRNAs or genes

names included in miRGate, similar to the provided input.

As an optional step, miRGate provides an advanced fea-

ture where several filtering options can be adjusted.

Among them, we highlight the possibility to filter by

ENCODE principal isoforms (29), HAVANA biotypes

and/or predicted 30-UTR mRNA sequences. We also pro-

vide a novel feature, not present in other methods, that

considers an overlap when the binding event between the

miRNA seed and the mRNA 30-UTR occurs in the same

genomic position. Hence, it is possible to label remarkably

agreed predictions when two or more different algorithms

coincide predicting the same target in terms of target site

type and RNA coordinates.

It is worth mentioning that those predictions that have

been found to be experimentally corroborated (i.e. con-

tained in at least one of the four experimental databases

incorporated in miRGate) are highlighted in bold in the

web page to make their identification easier to the user.

Besides, for each 30-UTR, we provide links to APADB (51),

a database for alternate polyadenylation that provides

information of potential loss of miRNA binding sites.

All results can be saved in csv format for downstream

analyses. Details regarding the number of miRNAs and

30-UTRs in comparison with other integrative analysis are

provided in Supplementary Table S1.

Figure 4. Integration of miRGate predictions versus downloadable pre-

dictions from each individual method (only available for miRanda,

Targetscan and Pita) over validated targets. The best resulting datasets

where selected for each method: miRanda (purple): good scores and

conserved targets (AUC: 0.599). Targetscan (blue): conserved targets

(AUC: 0.560) and Pita (light green): top scores (AUC: 0.630). miRGate

(red, AUC: 0.704).

Figure 5. Accuracy achieved when validated databases are distributed

according to a reliable criterion. OncomirDB, AUC of 0.769, based

on manually curation (high reliability), miRecords, AUC of 0.727, as a

partially curated database (medium reliability) and miRTarBase and

Tarbase, AUC of 0.699, relying on text mining techniques (lower

reliability).

Page 6 of 9 Database, Vol. 2015, Article ID bav035

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav035/2433167 by guest on 20 M

arch 2024

3
of 
3.3
-
 percent
In order 
'
'
,
'
'
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav035/-/DC1


RESTful API

Representational state transfer (REST) is often used as an

alternative to Simple Object Access Protocol to deploy web

services (52). miRGate provides a EXtensible Markup

Language-based REST application programming interface

(API) to allow automated queries in the database using re-

mote programmatic tools. Using this interface, the server

can be accessed from multiple programming languages,

allowing researchers to wire miRGate results to their ana-

lysis pipelines. The current API version allows gene/

miRNAs retrieval operations (as cleavage information,

gene localization or seed sequence recovering for miRNAs

or isoform localization, ENCODE annotation or Havana

biotype for genes), including data sources listing, catalogue

listing and query execution to retrieve detailed information

about predicted and validated targets sites.

Details and examples of the implementation of the

RESTful miRGate API in the Perl language are provided in

the online documentation (http://mirgate.bioinfo.cnio.es/

API/api.html).

Discussion

The aim of miRGate is to provide a reliable

miRNA–mRNA pairs database and at the same time to fill

the gap among predicted and non-concordant experimen-

tally validated targets. At present, existing alternatives rely

on pre-compiled targets from external resources. As an

example, mirGator (20) uses a human dataset with pre-

compiled targets from Pita (32), PicTar (53), TargetScan

(35) and miRanda (31), which implies three different

human builds and hence a different and a dissonant num-

ber of 30-UTR sequences. mirWalk (21) calculates possible

targets using RNAHybrid (33) software, but as other data-

bases, it combines the results with previous computed tar-

gets from different sources and consequently discordant

datasets. Since a considerably increase of overlap is ob-

tained among target predictions or validated pairs lists

when prediction methods are run using a common source

of annotation (24), we designed miRGate database to use a

complete dataset built on up-to-date sources that provide

full miRNA and 30-UTR sequences. Our dataset was used

as a common input for five different public algorithms that

predict miRNA–mRNA targets and integrated in a rela-

tional database. To our knowledge, miRGate is the only

available tool that reconciles the existing disagreement

among predicted pairs and experimental validated pairs.

The methodology implemented in miRGate, resulted in an

increase of 10–21% in accuracy when our predictions

are compared to pre-compiled datasets employed by

other tools versus a dataset of validated miRNA–mRNA

targets.

It is also important to note that miRGate database, un-

like other tools, includes all variants of every gene in

human, mouse and rat that potentially could be expressed

in any experimental condition (including pseudogenes,

antisense transcripts, non-coding genes among others).

Others focus on protein coding isoforms or the longest pro-

tein-coding variant, underrating the number of regulatory

elements of the gene. A complete 30-UTR dataset is essen-

tial as these regions contain several regulation motifs that

control the expression and harbour miRNA binding sites

and/or other regulatory sequences. Longer 30-UTRs will

more likely possess such signals, or more of them, and the

mRNA will likely be more subjected to regulation (54).

Furthermore, the length of the 30-UTR can affect not only

the stability but also the localization, transport and trans-

lational properties of the mRNA (55). Other important

reason that supports a complete dataset inclusion is based

on the restriction rules that dictate an effective target site;

for instance, binding positions over the 30-UTR, AU enrich-

ment and miRNA binding cooperation along the 30-UTR

sequence. As these features are sequence dependent and a

gene may have several and different 30-untranslated se-

quences, the real regulation by miRNAs should be deter-

mined taking into account all 30-regulatory sequences.

Poliseno et al. (26) confirmed this observation, where a

pseudogene was found to be responsible of a miss-

regulation of PTEN1. For this reason, the inclusion in

miRGate of all variants allows us to provide a complete

and undistorted regulation network that potentially con-

trols cellular processes where gene isoforms are expressed.

miRGate includes miRNAs virus–host target gene

pair’s prediction such as Epstein–Barr and Kaposi

sarcoma-associated herpesvirus. Little information is

found about these viruses as most of other databases focus

on intra-organism target predictions, but miRGate calcu-

lated pairs were successfully validated in diffuse large

B-cell lymphomas (42) and Burkitt lymphoma samples in-

fected with Epstein–Barr virus miRNAs (43). Apart from

viruses, miRGate has also been used in hereditary breast

tumour samples, hyperdiploid multiple myelomas, mantel

cell lymphomas and B-cell lymphomas where expression

levels of isoforms and/or miRNAs were measured using

distinct techniques. In all cases, miRGate provided targets

that were confirmed, pointing the suitability of this tool to

the scientific community (43–50).

In addition, miRGate can be accessed as a RESTful API,

enabling the integration and inter-operation of diverse sour-

ces based on related technology. miRGate API is designed to

provide all stored information and it can be implemented

with other catalogued services in analyses pipelines. We be-

lieve that this could be a very helpful tool as it offers a fast,

automatic, customizable and integrated query execution.
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To summarize, miRGate is a unique catalogue of

reliable in-house-predicted miRNA targets and also experi-

mentally validated pairs for the scientific community that

is publicly available, either as a web page or as a RESTful

web service. It includes a common, complete and updated

dataset from miRNAs and all known gene variants for

human, mouse and rat providing high confident predic-

tions. Of note, miRGate succeed to provide useful targets

obtained from different transcriptomic techniques that

were robustly validated.

Supplementary Data

Supplementary data are available at Database Online.
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Valencia and Elena López for critical reading of the manuscript.
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