
Original article

A general concept for consistent documentation

of computational analyses

Peter Ebert1,2, Fabian Müller1,2, Karl Nordström3, Thomas Lengauer1

and Marcel H. Schulz1,4,*

1Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken,

Germany 2Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
3Department of Genetics, Saarland University, Saarbrücken, Germany and 4Cluster of Excellence on

Multimodal Computing and Interaction, Saarland University, Saarbrücken, Germany

*Corresponding author: Tel: þ49 681 93253115, Fax: þ49 681 93253099, Email: mschulz@mmci.uni-saarland.de

Citation details: Ebert,P., Müller,F., Nordström,K., et al. A general concept for consistent documentation of computational

analyses. Database (2015) Vol. 2015: article ID bav050; doi:10.1093/database/bav050

Received 23 January 2015; Revised 2 April 2015; Accepted 29 April 2015

Abstract

The ever-growing amount of data in the field of life sciences demands standardized ways

of high-throughput computational analysis. This standardization requires a thorough

documentation of each step in the computational analysis to enable researchers to

understand and reproduce the results. However, due to the heterogeneity in software

setups and the high rate of change during tool development, reproducibility is hard to

achieve. One reason is that there is no common agreement in the research community

on how to document computational studies. In many cases, simple flat files or other

unstructured text documents are provided by researchers as documentation, which are

often missing software dependencies, versions and sufficient documentation to under-

stand the workflow and parameter settings. As a solution we suggest a simple and mod-

est approach for documenting and verifying computational analysis pipelines. We

propose a two-part scheme that defines a computational analysis using a Process and an

Analysis metadata document, which jointly describe all necessary details to reproduce

the results. In this design we separate the metadata specifying the process from the

metadata describing an actual analysis run, thereby reducing the effort of manual docu-

mentation to an absolute minimum. Our approach is independent of a specific software

environment, results in human readable XML documents that can easily be shared with

other researchers and allows an automated validation to ensure consistency of the meta-

data. Because our approach has been designed with little to no assumptions concerning

the workflow of an analysis, we expect it to be applicable in a wide range of computa-

tional research fields.

Database URL: http://deep.mpi-inf.mpg.de/DAC/cmds/pub/pyvalid.zip

VC The Author(s) 2015. Published by Oxford University Press. Page 1 of 11
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2015, 1–11

doi: 10.1093/database/bav050

Original article

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

http://deep.mpi-inf.mpg.de/DAC/cmds/pub/pyvalid.zip
http://www.oxfordjournals.org/

Introduction

Large national and international research consortia like

ICGC (https://icgc.org), DEEP (www.deutsches-epigenom-

programm.de), Blueprint (www.blueprint-epigenome.eu)

or ENCODE (1) generate and host vast amounts of genetic

and epigenetic data. Thorough documentation and annota-

tion is required on the side of the data provider in order to

enable researchers from all over the world to access and

process these datasets. The annotation metadata related to

each datum ideally consist of concise descriptions of how

individual files are generated. This description typically in-

cludes information on the procedures for sample acquisi-

tion, sample and donor characteristics such as health

status, the type of assay and associated experimental

protocols and details on the computer programs applied to

analyse the resulting data. The latter item is usually limited

to information on software name and version as well as

basic parameter settings. The data avalanche that came

with the rise of microarray and next-generation sequencing

(NGS) technologies demanded the setup of high-throughput

computational analysis tools and pipelines. Employing these

pipelines typically results in a set of genome-scale measure-

ments or annotations. The large number of results prohibits

any manual evaluation and requires well-structured access

to additional information to gather new biological insights.

The scientific community has thus acknowledged the need

for proper data curation and description. Coordinated ef-

forts such as the ones undertaken by the International

Society for Biocuration (2, 3) have been initiated to curate

biological data and make them computationally available to

research groups. Additionally, several format specifications

have been developed to comprehensively capture the han-

dling of biological samples in complex studies. These for-

mats are either tailored to specific assays, such as MAGE-

TAB (4) for microarrays, or are more generally applicable

like the MAGE-TAB based BIR-TAB specification de-

veloped by the modENCODE consortium (5). The ISA-TAB

(6) specification does not only link biological samples to

protocols and derived data, it also allows to describe com-

plex investigations encompassing several individual studies,

each one in turn consisting of a number of assays. However,

while these examples provide solutions to describe study set-

ups in combination with experimental protocols, they have

not been designed to document computational analyses con-

sistently and in all detail, as they do not include templates to

record the individual steps of an analysis.

Apart from curation efforts and consistent record keep-

ing, due to continuously improved and updated annota-

tions of biological entities such as reference genome

assemblies and gene models [e.g. GENCODE (7)], proper

versioning of data descriptions has become crucial. Ideally,

i.e. when all data and metadata for a particular study are

available in a versioned and standardized format, this

would enable independent researchers to reproduce the re-

sults, provided the respective software environment. In

software development, version control systems like

Subversion (https://subversion.apache.org) or git (http://

git-scm.com) have proven useful for keeping track of

changes in program code. For biological data, the overall

pace of change is slow compared with the rapid cycles in

software development. The high rate of change in software

development is due to the multitude of motivations for

altering program code: fixing a bug, replacing an algorithm

with a better one, changing the control flow in the pro-

gram or using a more appropriate data structure, to name

just a few. Despite all these reasons for changing software,

good programmers aim for high stability and robustness of

their software interface, e.g. the naming of command line

parameters should not change with an incremental soft-

ware update. This is a vital property of a software to be

used in a production environment, yet it lures the user into

believing that ‘nothing critical changed’ after installing an

update.

As exemplified in the Motivation, these principles are

not generally applied to documenting and describing the

processing of publically available biological datasets, po-

tentially due to much lower rates of change with such data.

In this work, we describe a concept for making meta-

data on computational analysis pipelines available that re-

spects the characteristics outlined earlier.

Motivation

To argue why a standardized approach to the description

of computational analyses is beneficial to the scientific

community, let us consider the example of an arbitrary

ENCODE ChIP-seq experiment (for instance ENCODE

accession ENCSR000AKA; GEO sample accession

GSM733708) and focus on the histone peak file. The de-

scription page (http://genome.ucsc.edu/cgi-bin/hgFileUi?db

¼hg19&g¼wgEncodeBroadHistone) for this track lists in-

formation concerning the short-read alignment and the

subsequent peak calling in a free text paragraph. The align-

ment of the data against the hg19 reference genome (8)

was performed using MAQ (http://maq.sourceforge.net)

with two non-default parameters, yet no software version

is given. The next step (filter 1), filtering out reads with

more than ten best matches in the genome, is just described

in plain text, presumably because no special software is ne-

cessary to perform the filtering. The subsequently applied

peak calling tool is Scripture (9), again no information

about the software version is included (we note that in

Page 2 of 11 Database, Vol. 2015, Article ID bav050

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

https://icgc.org
www.deutsches-epigenom-programm.de
www.deutsches-epigenom-programm.de
www.blueprint-epigenome.eu
z
(ISB)
(
)),
https://subversion.apache.org
http://git-scm.com
http://git-scm.com
to
,
``
''
above
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHistone
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHistone
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHistone
http://maq.sourceforge.net

the summary page for all tracks of that sample, the

‘Lab specific informatics’ field holds the information

‘ScriptureVPaperR3’, but we cannot connect that name to

any version of Scripture). The Scripture command line is

again described in plain text, stating parameters -task chip

and -windows as well as informing that neither -trim nor a

‘mask file’ have been used. This form of describing a com-

mand line forces the user to refer to the tool documentation

for more specific information; hence, it is laborious to assem-

ble an actually executable command line for Scripture repro-

ducing the results. The track description lists one more

filtering step (filter 2), which has been implemented in

MATLAB (MATLAB and Statistics Toolbox Release

2012b, The MathWorks, Inc., Natick, MA, USA), but

gives no more specifics, in particular the MATLAB code is

not available. All in all, the reproducibility of the results

heavily relies (i) on the user’s experience in executing

the described tools with correct parameter settings, (ii) on

the identification and availability of a tool version that

does not generate a different output despite identical

parameter settings, and, in particular, (iii) on performing the

two unspecified filtering steps (filter 1 and 2 in the above

text) in exactly the same way. The only alternative is to

contact the developer of the software or the corresponding

researcher responsible for the analysis and ask for all com-

putational sources to run the analysis—a procedure that

might prove difficult if this contact person has left the

institute.

This case example illustrates how, even in large, reput-

able consortia, the annotation of computational analyses is

usually not on par with the level of detail one can find in

metadata describing biological procedures or entities. This

situation does not only impede the reproducibility of re-

sults, but also affects future studies that aim for compar-

ability to existing data by implementing supposedly

identical wet and dry lab protocols.

We propose an alternative form of computational meta-

data specification that allows for a complete record of all

computational operations applied to a file with reasonable

effort on the developer’s side. Our new approach is based

on the following central requirements:

i. results in human readable documents

ii. uses simple and established data formats

iii. is flexible enough to describe various types of compu-

tational analyses

iv. is a structured way of describing analyses

v. includes version information

vi. allows for automatic generation of most metadata

vii. allows for automatic validation and consistency checks

viii. is lightweight enough to allow easy sharing of

documents

In the following, we describe our approach in detail,

compare it to alternative options and illustrate its embed-

ding in a large research project.

Process and analysis metadata: two

complementary components in the specification

of computational analyses

Our proposal for computational metadata specification de-

fines two complementary concepts: A ‘process’ represents

the analysis steps and associated input and output files in

an abstract form. An ‘analysis’ describes a realization of

running such a process and is therefore unique for each

execution and input (Figure 1).

Process metadata

A process (Figure 2) describes analysis steps that are

applied to multiple samples or replicates of the same type

within a research project. Thus a process is analogous to

an experimental protocol. Typical examples in the field of

(epi-)genomics include short-read alignment, ChIP-seq

peak calling and RNA-seq transcript quantification. A pro-

cess defines the individual steps of an analysis irrespective

of the details of the sample at hand, like its species of ori-

gin, cell type or disease state. As such, a process offers an

overview of how a particular file has been processed with-

out detailing parameter settings specific to a given sample.

It should provide sufficient information to enable an inde-

pendent analyst (i) to grasp the overall flow of data from

input to output in clearly defined steps and (ii) to execute

the same analysis, with the setup of the software environ-

ment being the only major effort required. Because struc-

ture and clarity are essential in order to comply with these

objectives, we decided to use XML (www.w3.org/TR/

REC-xml) to specify processes. XML files are human and

machine readable and can be checked for correct syntax,

structure and data types against an XML schema definition

(www.w3.org/TR/xmlschema-ref) file. Additionally, XML

benefits from widespread software support, making it the

prime choice in cases where flexible interoperability is

required (10, 11).

Supplementary File S1 is an example process XML file

that can be opened in a common web browser or text edi-

tor, Supplementary File S2 is the same XML with a link to

a simple cascading style sheet (www.w3.org/TR/css-2010,

Supplementary File S3) document, which results in im-

proved readability when the file is opened in a web

browser. The process definition comprises four sections: a

header, a description, a listing of input, reference and out-

put files and a series of analysis steps. The header section

contains the process version and the contact information

Database, Vol. 2015, Article ID bav050 Page 3 of 11

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

``
''
``
''
``
''
,
®
Massachusetts
United States
®
 –
A
M
M
Since
www.w3.org/TR/REC-xml
www.w3.org/TR/REC-xml
XSD,
www.w3.org/TR/xmlschema-ref
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
CSS,
www.w3.org/TR/css-2010
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1

of the author. Incrementing the process version number

implies one of the following changes to the process descrip-

tion: (i) the version of at least one of the software tools has

been updated, (ii) the series of analysis steps has changed,

i.e. tools have been removed or added, (iii) default param-

eters have changed for at least one of the tools or (iv) the

input, output or reference file listings have changed. For in-

stance, adding an input, reference or output file to the pro-

cess should result in an increment of the version number

while an updated version of reference data, such as a new

genome assembly, should not, as long as the process is still

executable in the same way; the information about the

updated reference file would be contained in the analysis

metadata (AMD) (see next section). Furthermore, improv-

ing upon or adding new comments in the process file does

not require an increment in the process version.

The next section in the process XML document is a free

text description of the process (see Figure 2) in which the

author should outline the purpose of the process at hand.

As best practice recommendation, this description should

also contain details on basic assumptions or crucial com-

putational operations. The next part of the document lists

all files that are either input, reference or output files of the

analysis. Here, a reference refers to a file that is used to

gather additional information that are constant across

many, but not necessarily all, inputs. A typical example of

a reference file is the genome assembly sequence which is

not specific to the analysis of a certain sample, but only

changes if samples pertaining to a different genome are

analyzed. We acknowledge that one might consider refer-

ence files to be just another kind of input file. However, in

our experience, many scientists think distinctly about the

Figure 1. Process and analysis metadata. The basic relation between process metadata (‘PROCv1.xml’, left) and analysis metadata

(‘run1_PROCv1.amd’ and ‘runN_PROCv1.amd’, bottom) is illustrated. The process describes a type of computational analysis in an abstract form, in

particular specifying input (top), reference (right) and output files (bottom). The green and orange arrows represent different samples being analysed

using the same process, i.e. the same sequence of software tools is applied to the input data. N analysis runs result in N distinct sets of output files

(‘output files run1’ through ‘output files runN’, bottom) and N distinct AMD files containing parameters specific to the respective analysis [here exem-

plified with ‘parameter_1’ set to 500 (left) and 1000 (right)]. All of these N distinct AMD files link to the same process ‘PROCv1’.

Page 4 of 11 Database, Vol. 2015, Article ID bav050

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

es

Figure 2. An example specification of a process. This contrived example of a minimalistic process describes a computational analysis to count lines in an

input file that contain two specified words and compare the resulting number to the number of lines in a reference file (see also Supplementary File S2).

This figure clearly illustrates the four main sections of a process: (i) the header containing information about the process and its author, (ii) the free-text

process description, (iii) the file listings for inputs, outputs and references and (iv) the sequence of software tools (here cut for brevity, see

Supplementary File S2 for the full sequence) including version information and the command line to be executed. In this example, the first command line

contains the placeholders {word1} and {input_file}. Their actual values can be found in the corresponding AMD file (see Supplementary File S4).

Database, Vol. 2015, Article ID bav050 Page 5 of 11

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1

input and the reference data in their project; a common

pattern is to put input data into a different folder in the file

system and not to mix it with reference data files. Each file

entity has an identifier, a format, a comment field and a

quantity tag. The identifier is needed for relating files to

certain analysis steps. The format and comment fields

entail details on the nature of a file’s content. The quantity

tag can take on the values ‘single’ or ‘collection’, i.e. one or

more. We give an illustrative example of the fields’ usage

later in the text.

The final section sequentially lists all software tools in

order of execution stating the version and the command

line being executed. The command line describes the syn-

tax for an execution in an abstract fashion, referencing file

identifiers from above and containing placeholders for ana-

lysis-specific parameters in curly braces. Hence, it cannot

be copied and executed as is. To make a command line

executable, all placeholders have to be replaced with con-

crete values. These values describe an actual analysis run

pertaining to a specific sample and are stored in AMD files.

Furthermore, not all iterations or repetitions of certain

steps, such as looping over all input files or implicit paral-

lelization are stated explicitly but are rather indicated by a

dedicated loop tag (see example below). Additionally, a

comment field contains tool specific remarks such as ex-

planations on choices for tools and parameters.

Analysis metadata

The metadata for a particular analysis represent an execu-

tion of a process. This implies that there is a 1:N relation-

ship between process and AMD, where N can be large

depending on the number of samples to be analyzed or due

to various parameter settings that are tested for each sam-

ple (Figure 1). In contrast to the process metadata, which

need to be created manually, the generation of AMD can

be automated by including dedicated routines into the soft-

ware that generates the analysis results. The corresponding

file format should therefore be simple and well-supported

by virtually all programming languages. We suggest a row

oriented key-value text file, a format for which readers and

writers can be implemented easily even if the programming

language of one’s choice has no native support for it.

Supplementary File S4 is an example AMD file that com-

plements the corresponding process XML (Figure 2,

Supplementary Files S1 and S2).

The layout of the AMD file mirrors the logical structure

of the process metadata file: the first section contains gen-

eral information like the process version, the date of the

analysis run and the identifier of the analysis. The next sec-

tion consists of three blocks naming input, reference and

output files, i.e. these blocks contain the placeholders as

encountered in the process metadata as keys, followed by

the filenames that were part of the actual tool execution as

values. Similarly, the following section contains informa-

tion for the non-default parameter settings of the tools

described in the process. Finally, statistics and quality met-

rics pertaining to the analysis run that are routinely sur-

veyed on a per data type level are reported. One could

argue that the AMD file itself is also output of the process,

and as such must be included in the process XML.

However, since only the joint information of process and

AMD result in a complete description of an analysis run,

its existence after the successful execution of the process is

implicitly required.

Example: processing and analysis of ChIP-seq

data

To substantiate these generic descriptions of process and

AMD files, we discuss a real world example, and elucidate

their embedding in the broader context of the DEEP pro-

ject as a representative of a joint research effort involving

file processing and data analysis by several different

institutes.

File listings

The ChIP-seq analysis process (CHP) we discuss here was

developed in the context of the DEEP project and com-

prises steps for performing peak calling, for producing

input-normalized signal tracks as well as generating vari-

ous plots that aid in assessing data quality. It expects

short-read alignment files originating from ChIP-seq ex-

periments for multiple histone modification marks and

hence supports both broad and narrow marks.

Supplementary File S5 is the corresponding CHP process

XML and Supplementary File S6 is its counterpart, the

AMD file of an actual analysis run. Because one file per

histone mark is expected, the ‘Inputs’ section of the CHP

process lists standard Binary Alignment/Map (BAM) files

for the histone marks as ‘collection’, i.e. one or more. Note

that the input control is listed separately as ‘single’, be-

cause exactly one input control file is expected to match all

histone files in an immunoprecipitation experiment. The

corresponding [Inputs] block in the AMD lists the actual

filenames. The BAM index files are handled in the same

way, except for a comment in the CHP process stating that

these files are renamed during the execution of the process

to meet the naming requirements of some of the software

tools used in the analysis. Based on our experience, we

want to stress that such details are crucial in order to en-

able other researchers to run the process on their own

data, avoiding a potentially frustrating trial and error

phase after which the researcher might deem a process to

Page 6 of 11 Database, Vol. 2015, Article ID bav050

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

``
''
``
''
analysis metadata
E
M
analysis metadata
analysis metadata
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
analysis metadata
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
analysis metadata
analysis metadata
analysis metadata
D
analysis metadata
L
abbr.
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
analysis metadata
(
abbr.
AMD)
Since
``
''
``
''
``
''

be ‘too complicated to be used’ and instead start setting up

her own, supposedly functionally identical pipeline.

The free text description of the process is the only sec-

tion in the process XML that is not linked to the AMD.

The ‘References’ section states that this process requires a

reference genome, a file containing regions to be filtered

out for certain analysis steps and a file containing genomic

regions relevant for the purpose of generating quality con-

trol statistics and plots. Reference files represent static in-

puts for defined types of analyses. Therefore, the reference

filenames listed in the AMD should always be identical

when comparing compatible AMDs, i.e. AMDs for two

different samples (and otherwise identical conditions)

should show identical references. Analogous to the input

files listed in the [Inputs] block, the [Outputs] block in the

AMD lists the filename of all files that must be available

after the successful analysis run. Because file naming con-

ventions differ substantially between projects, we concede

that there is probably no single best way to define an in-

formative file naming scheme. However, based on our ex-

perience, it has proven to be useful to at least include the

process identifier in every filename. This (i) links every file

to a specific process and (ii) allows for shorter filenames

because all necessary meta-information is stored in the cor-

responding, uniquely identifiable analysis and process

metadata files. Specifying strict naming schemes for (out-

put) files is particularly useful when connecting different

processes as any analysis downstream of a given process in

a given analysis pipeline can then in turn rely on the input

files being named accordingly. Furthermore, comparing

the output files generated by the analysis to the ones listed

in the CHP ‘Outputs’ section allows for an easy way of

checking whether or not the analysis run terminated

successfully.

Analysis steps

The core of the CHP process details the tools and com-

mand lines for the different steps of the analysis, which in

this case consists mainly of different executables of the

deepTools package (12), MACS2 (13) for peak calling and

two custom scripts. We examine three of the command

lines in more detail to illustrate important aspects:

Step 3 (bamFingerprint tool for quality control of ChIP-seq

experiments):

bamFingerprint -p {numproc} –bamfiles

{GALvX_*} ––plotFile {samplesID.PROCESS.DATE.

fgpplot} ––labels {labels} ––fragmentLength

{all_median_fraglen} ––numberOfSamples 500000

This command line call is an example of simple pattern

matching as it is commonly used, e.g. to list filenames in a

Linux shell environment. Placeholders are denoted in

curly braces and it is possible to use pattern matching to

reference multiple files at once. For instance, the

{GALvX_*} placeholder contains the wildcard character

‘*’, indicating that this placeholder refers to all histone

BAM files and the input control BAM file. There exists a

variety of grammars for expressing such patterns. We de-

liberately advise against the use of a full-blown language

for regular expressions because complicated patterns might

impede human-readability of the metadata files. We sug-

gest using simple, widely known and accepted standards as

we do here. It is a valid question to ask how a user is sup-

posed to see that this tool is executed with all BAM files at

once and not with each BAM file separately, i.e. implicitly

looping over all input files. In this example the loop tag is

empty (see Supplementary File S5), indicating that all in-

put files are processed at once. Another indication

for this is the quantity tag of the output file with the

identifier samplesID.PROCESS.DATE.fgpplot in the

CHP XML, which is set to ‘single’. This implies that, irre-

spective of the number of inputs to the tool, there has to be

exactly one file as described in the ‘Outputs’ section of the

process. The {labels} and {all_median_fraglen}

placeholders have no match in the process ‘Inputs’,

‘Outputs’ or ‘References’ section and thus are interpreted

as a non-file parameter. Therefore, they appear in the

[Parameters] block of the AMD (see Supplementary File

S6). Note that the parameter ––numberOfSamples is not

set dynamically, but fixed for all executions of this process

to the value specified in the CHP XML.

Step 4 (computeGCBias tool to check for GC bias in the

data):

computeGCBias –bamfile {GALvX_*} ––

fragmentLength {*_median_fraglen} ––GCbias

FrequenciesFile {sampleID.PROCESS.DATE.

gcbfreq} ––biasPlot {sampleID.PROCESS.DATE.

gcbplot}

This computeGCBias call (shortened to the relevant

parts) shows an example of looping. Again we find the

wildcard character “*” to match all BAM files, histone as

well as input control, and if one checks the process’

“Outputs” section, we see that the files identified by

sampleID.PROCESS.DATE.gcbfreq and sampleID.

PROCESS.DATE.gcbplot are listed with the quantity

“collection”. This indicates that the number of output files

changes depending on the number of input files. In contrast

to the previous example, now the loop tag contains the

two placeholders GALvX_histone and GALvX_input.

This information is sufficient to determine which input

files are part of the loop; one only has to refer to the

“Outputs” section of the process to see which output file is

generated for each input file. The wildcard character is

Database, Vol. 2015, Article ID bav050 Page 7 of 11

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

``
''
``
''
``
''
,
``
''
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
``
''
``
''
``
''
``
''
``
''
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1

also used in the placeholder {*_median_fraglen}, indi-

cating that the AMD file must contain several entries with

the suffix _median_fraglen and a prefix that is depend-

ent on the input file, and this is indeed the case (see

Supplementary File S6).

Step 5 (MACS2 tool to call histone peaks in the data):

macs2 callpeak -t {GALvX_histone} -c {GALvX_

input} -f BAM –gsize {genomesize} –keep-dup all

–name {*_name_prefix} –nomodel –extsize {*_

median_fraglen} –qvalue 0.05 {broad}

The peak calling with MACS2 illustrates a variant of

looping. As can be seen from the loop tag, the loop runs

over the histone alignments, but not over the input control.

This means that the input control BAM file is always the

same for each execution, i.e. the input control file is kept

whereas the next histone file is used. The {broad} place-

holder represents a binary switch to change MACS’s be-

havior between broad peak and narrow peak calling.

Because there is no standard way of expressing binary

switches, we recommend the explicit form stating True/

False in the AMD file (see Supplementary File S6,

[Parameters] block). This example also illustrates a case in

which the tool command line parameters do not allow to

specify a full name for the output files, i.e. the parameter –

name {*_name_prefix} only specifies a prefix for the

output files. Hence, there is no inherent link between the

command line and the output files listed in the process

description. It is advisable to comment such cases in the

listing for the ‘Output’ files to establish the connection. We

chose to add the comment ‘Standard MACS2 output

for narrow/broad marks’ for all respective output files

(see Supplementary File S5).

These three examples demonstrate how to document

analysis steps in terms of tool command lines containing

placeholders for files or variable parameters. We intention-

ally refrained from developing a full-blown notational sys-

tem to specify strict syntax rules for pattern matching or to

distinguish between different variants of loops, as we as-

sume that this is largely a matter of personal preference—

ideally guided by common standards—or should be set in

project-internal guidelines if required. Similarly, we make

no assumptions how a loop is implemented, e.g. in a se-

quential manner or via parallelization using several CPUs

or even several machines.

Discussion

Validation of process and analysis metadata

One substantial benefit of the XML format we chose

for our metadata specification is the possibility to check

the process document against an XML schema file

(Supplementary File S7) in order to validate the docu-

ment’s structure. Additionally, given a process and a cor-

responding AMD file, it is possible to automatically check

for cross-references between the two files. Thus, the speci-

fication of all input, output and reference files as well as of

all analysis parameters can be verified. This is a necessary

precondition for turning the abstract command lines in the

process XML into executable command lines. Due to the

widespread support of XML and the simple data formats

we propose, this automated validation procedure can be

implemented in a variety of programming languages. We

provide a Python 2.7/3.2 prototype implementation that is

freely available (see link at the end of the text).

Embedding and interfacing of processes

To illustrate how different processes interface, let us con-

sider the analysis of ChIP-seq data in a broader context:

steps prior to the high-level analysis we presented in the

Example involve, among others, short read sequencing,

quality control and alignment. Downstream processes

might encompass chromatin state segmentation [e.g. using

ChromHMM (14) or Segway (15)], enrichment analyses

and so on. Figure 3 shows a simplified view of the data

flow for a typical ChIP-seq analysis pipeline. Because de-

tailing all work concerning sample acquisition, preparation

and sequencing is beyond the scope of this publication, we

omit this ‘wet lab’ part of the data flow and start with the

alignment of the raw sequencing data as specified in the

GAL process (see Figure 3). The main output of this pro-

cess is a set of BAM alignment files. These BAM files are

then input to the CHP process, which results in the output

files as described earlier. Any downstream analysis, e.g.

concerning the functional characterization of the genomic

regions showing histone peaks, would then be added to the

chain of computational processes depicted in Figure 3. We

point out that splitting the work into well-defined subtasks

allows for efficient distribution of the individual steps

across different research groups or institutes. Easily ex-

changeable and understandable annotations of computa-

tional processes are in turn pivotal to allow such a setup

without a trade-off in efficiency due to communication

overhead. An obvious requirement for this is an expert

consensus on methods commonly used in the field. We as-

sume that this is the case in many areas of bioinformatics

research, which allows for wide applicability of our com-

putational metadata specification.

Apart from documenting the computational analyses in

a project, the generated process and AMD files can be used

to build an information resource that is made public to-

gether with the actual data files. For instance, a simple

website can be created, listing all files in the project and

Page 8 of 11 Database, Vol. 2015, Article ID bav050

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

analysis metadata
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
Since
analysis metadata
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
``
''
``
''
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
 –
 –
,
analysis metadata
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1
analysis metadata
(
)
Since
``
''
above
analysis metadata

linking to the corresponding process and AMD files.

Another possibility of organizing data files in relation to

the process XML and the AMD is in form of entries in a

database, facilitating different ways of presenting the rele-

vant information to project partners or third parties.

Because it is likely that web resources and connected data-

bases already exist at a research institute, we refrain from

making explicit suggestions about how to disseminate the

computational metadata to the public.

Related work

In contrast to existing related solutions like Galaxy

(16–18) or Taverna (19), our approach does not provide

immediate executability of a process (or workflow, as it is

usually called in the above systems). However, this alleged

shortcoming is due to the fact that the objective of our ap-

proach is a different one. Established workflow manage-

ment systems commonly feature a rich graphical user

interface, intuitively ‘clickable’ constructions of new work-

flows and easy data exchange with other instances of the

same type. However, the user is required to setup the

workflow inside their system, whereas our scheme is inde-

pendent of operating system, internet access, preinstalled

scripts or specific software packages. This is a particularly

relevant concern if the user is working in an environment

where they do not have full control over the software

setup. Note that existing workflow management systems

Figure 3. Embedding of the CHP process in a research project. This overview illustrates the embedding of the CHP process in the DEEP research pro-

ject to analyze histone ChIP-seq data (omitting steps in the wet lab). The sequencing reads are aligned according to the specification in the GAL pro-

cess for both the histone marks (top left) and the input control (top right). The BAM alignment files are then input to the CHP process (blue box),

which is discussed in detail in the Example above. Besides these input files, the genome assembly sequence (top middle) and some annotation BED

files (right) are used as reference files in the CHP process. The output files of the CHP process (signal and peaks) are then in turn input to subsequent

analyses, e.g. to a chromatin state segmentation process as illustrated here.

Database, Vol. 2015, Article ID bav050 Page 9 of 11

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

analysis metadata
Since
W
``
''

need to be properly installed and maintained on the produc-

tion hardware (like a compute cluster) and those wrappers

for all software tools typically need to be available, so that

the tools can be integrated in the automated workflows.

One has to keep in mind that these requirements have to be

fulfilled at every location at which the processes are to be

executed, which again might prove difficult if project part-

ners rely on an already established software setup.

Our approach also affords automatic consistency

checks, which is a desirable feature in large research pro-

jects to ensure consistent documentation. This is especially

important as we see a shift in purpose of processes/work-

flows towards long-term documentation rather than

allowing for immediate executability of a computational

analysis. We developed our specification with the require-

ment of human readability, and we do not require that a

particular workflow management system can now, and in

five years from now, read the process XML and the AMD

file (though, due to their simplicity, general machine read-

ability can be assumed).

Another aspect concerns data management across sev-

eral institutes. To the best of our knowledge, there is no

software—in particular no available workflow manage-

ment system—that would allow for an automated, reliable,

continuous and terabyte-scale data synchronization across

the heterogeneous architectures of several partner insti-

tutes. Consistent file naming is thus of high importance

when data is exchanged between project partners. Our

metadata specification allows for total control over file-

names, which is not necessarily the case if data are put

under the control of a workflow management system. A

related issue is the addition or modification of reference

data, which requires limited efforts in our setup, yet is

something that only recently has been simplified in Galaxy

(20). To summarize, in contrast to established workflow

management tools, we see our approach targeted to scen-

arios where computational resources are distributed across

independent locations, thus requiring a flexible way of

defining which data is exchanged in which format, and, at

the same time, can serve as full documentation of how the

data was generated in the first place.

Conclusion

We present a flexible, lightweight and modest solution to

the problem of annotating computational analyses in large

research projects. Our metadata specification has been de-

veloped in the context of the DEEP consortium and has

proven applicable to standardizing analyses for various

types of NGS assays, such as histone ChIP, DNase hyper-

sensitivity, whole-genome bisulfite methylation and differ-

ent strategies for sequencing RNA. We are confident that

our work can be easily transferred to projects with other

scope and needs regarding computational analyses. We

think that the possibility to validate the process XML and

to check it against the generated AMD file offers a new

way to increase the overall quality of annotations of com-

putational analyses. We acknowledge that certain content

such as the process description cannot automatically be

checked for consistency. However, this is not a problem in-

trinsic to our approach and, based on our experience, it

can only be remedied by communication and cooperation

among project partners before releasing data and annota-

tions to the public. At the current stage of the DEEP pro-

ject, many processes have been defined for default analyses

and are run routinely, yet it is still to be examined to what

extent integrative analyses targeting specific questions can

be defined in a generalized fashion. We assume that ‘all vs.

all’ or ‘disease vs. control’-types of comparative analyses

or basic integrative approaches like chromatin state seg-

mentation are feasible to describe using the current specifi-

cation. Any exploratory or targeted analysis is likely to

contain aspects that are in flux and related to specific bio-

logical questions and as such provides a moving target. It

might therefore not be possible to specify such an analysis

prior to its actual execution.

The issue of effortlessly executing a process on an inde-

pendent computer is, in our opinion, not satisfactorily

solvable given the current state of technology. We suppose

that the concept of virtualized application containers (e.g.

www.docker.com or https://coreos.com/blog/rocket) will

eventually lead to out-of-the-box executable processes,

freeing third-party users of the need to install and maintain

a whole software environment potentially specific to a

small set of problems.

We think that concisely annotated and structured

computational analyses will ease reproducibility of re-

sults, offer potential to streamline complex research setups

by relying on well-defined output of prior analyses and are

vital to the community to understand the data published

by large research consortia. Frameworks like the one

described here will be crucial to achieve these goals.

Supplementary Data

Supplementary data are available at Database Online.

Acknowledgements
We thank Andreas Richter for his support in specifying the CHP pro-

cess. We thank the DEEP consortium members for helpful discussions

during the development of our computational metadata specification.

Funding

This work was supported by the DEEP project (01KU1216A to P.E.,

F.M. and 01KU1216F to K.N.) of the German Federal Ministry of

Page 10 of 11 Database, Vol. 2015, Article ID bav050

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

that
analysis metadata
 –
 –
analysis metadata
``
''
-
``
''
www.docker.com
https://coreos.com/blog/rocket
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav050/-/DC1

Education and Research (BMBF) and by the Cluster of Excellence

on Multimodal Computing and Interaction (EXC284 to M.S.) of the

German National Science Foundation (D.F.G.). Funding for open

access charge: Paid by M.S. with grant EXC248 mentioned above.

Conflict of interest. None declared.

References

1. Bernstein,B.E., Birney,E., Dunham,I. et al. (2012) An integrated

encyclopedia of DNA elements in the human genome. Nature,

489, 57–74.

2. Howe,D., Costanzo,M., Fey,P. et al. (2008) Big data: the future

of biocuration. Nature, 455, 47–50.

3. Bateman,A. (2010) Curators of the world unite: the

International Society of Biocuration. Bioinformatics, 26, 991.

4. Rayner,T.F., Rocca-Serra,P., Spellman,P.T. et al. (2006) A sim-

ple spreadsheet-based, MIAME-supportive format for micro-

array data: MAGE-TAB. BMC Bioinformatics, 7, 489.

5. Washington,N.L., Stinson,E.O., Perry,M.D. et al. (2011) The

modENCODE data coordination center: lessons in harvesting

comprehensive experimental details. Database, 2011, 1–17.

6. Rocca-Serra,P., Brandizi,M., Maguire,E. et al. (2010) ISA soft-

ware suite: supporting standards-compliant experimental anno-

tation and enabling curation at the community level.

Bioinformatics, 26, 2354–2356.

7. Harrow,J., Frankish,A., Gonzalez,J.M. et al. (2012)

GENCODE: the reference human genome annotation for The

ENCODE Project. Genome Res., 22, 1760–1774.

8. Lander,E.S., Linton,L.M., Birren,B. et al. (2001) Initial sequenc-

ing and analysis of the human genome. Nature, 409, 860–921.

9. Guttman,M., Garber,M., Levin,J.Z. et al. (2010) Ab initio re-

construction of cell type-specific transcriptomes in mouse reveals

the conserved multi-exonic structure of lincRNAs. Nat.

Biotechnol., 28, 503–510.

10. Comeau,D.C., Islamaj,D.R., Ciccarese,P. et al. (2013) BioC: a

minimalist approach to interoperability for biomedical text pro-

cessing. Database (Oxford), 2013, bat064.

11. Van Roey,K., Orchard,S., Kerrien,S. et al. (2013) Capturing co-

operative interactions with the PSI-MI format. Database

(Oxford), 2013, bat066.

12. Ramı́rez,F., Dündar,F., Diehl,S. et al. (2014) deepTools: a flex-

ible platform for exploring deep-sequencing data. Nucleic Acids

Res., 42 (Web Server issue), 187–191.

13. Zhang,Y., Liu,T., Meyer,C.A. et al. (2008) Model-based ana-

lysis of ChIP-Seq (MACS). Genome Biol., 9, R137.1–R137.9.

14. Ernst,J., Kellis,M. (2012) ChromHMM: automating

chromatin-state discovery and characterization. Nat. Methods,

9, 215–216.

15. Hoffman,M.M., Buske,O.J., Wang,J. et al. (2012) Unsupervised

pattern discovery in human chromatin structure through gen-

omic segmentation. Nat. Methods, 9, 473–476.

16. Giardine,B., Riemer,C., Hardison,R.C. et al. (2005) Galaxy: a

platform for interactive large-scale genome analysis. Genome

Res., 15, 1451–1455.

17. Goecks,J., Nekrutenko,A., Taylor,J. (2010) Galaxy: a compre-

hensive approach for supporting accessible, reproducible, and

transparent computational research in the life sciences. Genome

Biol., 11, R86.

18. Blankenberg,D., Von Kuster,G., Coraor,N. et al. (2010) Galaxy:

a web-based genome analysis tool for experimentalists. Curr.

Protoc. Mol. Biol., 89:19.10:19.10.1–19.10.21.

19. Wolstencroft,K., Haines,R., Fellows,D. et al. (2013) The

Taverna workflow suite: designing and executing workflows of

Web Services on the desktop, web or in the cloud. Nucleic Acids

Res., 41 (Web Server issue), W557–W561.

20. Blankenberg,D., Johnson,J.E., Taylor,J. et al. (2014)

Wrangling Galaxy’s reference data. Bioinformatics, 30, 1917–

1919.

Database, Vol. 2015, Article ID bav050 Page 11 of 11

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bav050/2433183 by guest on 20 M

arch 2024

